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‘mmg a hyperbolic floor i msplre
- both mathematlcs and art

By IVARS PETERSON _

A circular pattern ven the most that had so startled Escher offered hlm a Coxeter had sent Escher acopy

of triangles with brilliant inno- precise, aesthetically pleasing waytode:. symmetry article as'a thank you fo:
curved sides, A vators get their  pict diminishing figures within acircle:~ - mission to reproduce several of Esc
similar to this one, inspiration from e e e e i . pEPIOdiC: drawings. as. illustrations.
inspired M.C. somewhere. men had met in 1954 in Amsterdam’
Escher to create For the Dutch “International’ Congress-of Mathe

his Circle Limit graphic artist
series of prints. M.C. Escher,

. such a cre-
ative impetus came from a
particular illustration in a
1957 mathematical arti-
cle about symmetry. It
gave him what he lat--
er' .described as
“quite a shock” and
inspired him to
create fouri art-
works: theCircle
Limit series of i
prints. g

The illustra-

tion showed a
curious tiling of
black and' white
triangles - with
curved sides. En-
closed w1thm a’

angles became pro-
 gressivelysmaller as-
they.approached ‘the.,

" circle’s perimeter:
. The concept of mflm-

ty had long intrigued Es-.

cher, and he had-sought to -

capture this elusive notion in.

visual images. One strategy that

he employed was to cre :
ing patterns of interlocking flgures A
though Escher could imagine how such
arrays could extend infinitely, the actual
patterns he drew, of course, represented

espite the many manifestatic
Escher-inspired research,
basi

: 'wasn 't eritlrely satisfied with these efforts comet
* The mathematxcal drawmg—an 1Ilustra—_, topics:
tion of the so;called )hyper_polylc__plz;nef: s

Just ‘as a flat surfac >
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Ferguson '

A hyperblic quilt sewn t_ogeihg,é_r from. ..
pentagons of cloth, with four pentagons

“meeting at each comner in the pattern.”""

of paper—is a piece of the infinite mathe-
matical surface known as the Euclidean
_ plane, a saddle-shaped surface can be
thought of as a small piece of the hyper—
bolic plane. Picturing what the hyperbolic
plane looks like on a larger scale, however,
requires some mind-bending ingenuity..........
‘Freelance mathematician "JeffreyR.
Weeks of Canton;:N.Y., suggests making
“hyperbolic paper” from a large number
of equilateral triangles as one way to get-
a feel for the hyperbolic plane. .
Taping together equilateral triangles so

that precisely six triangles-meet at each -

vertex produces-aflat sheet:In contrast,
assembling equilateral triangles so seven
triangles meet at:each vertex-produces:a
floppy, bumpy surface.. The more trian-
gles you use and the larger the resulting

sheet, the more closely itresembles the:
.confirming the;accuracy of Eschers

- hyperbolic plane.. ... .

A similar constructlon canbe done with
pentagons. Mathematician and sculptor
Helaman Ferguson -of Laurel, Md., has
made an intriguingly wrinkly-hyperbolic
quilt by sewing together pentagonal patch-
es of fabric so that four pentagons meet at’
each corner. It’s an unruly blanket that re-
fuses to lie flat, he says.

Such constructions are not the only
way to visualize the hyperbolic plane.
More than a century ago, French mathe-
matician Henri Poincaré introduced a
method for representing the entire hyper-
bolic plane on a flat, disk-shaped surface.

In Poincaré’s- model, the hyperbolic
plane is compressed to fit within a circle.
The circle’s circumference represents
points at infinity. In this context, a
straight line, meaning the shortest dis-
tance between two points, is a segment
of a circular arc that meets the Poincaré
disk’s circular boundary at right angles

Although this model distorts distances,
it represents angles faithfully. The hy-
perbolic measure of an angle is equal to
that measured in the disk representation
of the hyperbolic plane. So, a repeating
pattern made up of identical geometric
shapes in the hyperbolic plane trans-
forms, when represented in a Poincaré
model, into an array of shapes that dimin-
ish in size as they get closer to the disk’s
bounding circle.

For his Circle Limit prints, Escher
worked out the underlying rules of these
disk models and developed his own

AT AN v A A mmn s

method for constructing a hyperbolic grid,
relying on his skill and intuition to create
the geometric scaffolding he needed. Cox-
eter’s “hocus pocus” mathematical text
wasn’t much help, Escher later remarked
in a letter to Coxeter. Nonetheless, Escher

-executed the drawings with extraordinary

accuracy, Coxeter comments.

"~ “The first time I saw a print of ‘Circle
Limit HI,” I said to myself, ‘that is the most
beautiful example I have ever seen of the

. Poincaré_circle model for hyperbolic
geometry,” says J. Taylor Hollist, a math-

ématiéian at the State University of New
York at Oneonta. He's documented many
historical interactions between Escher
and scientists.

Besides its beauty, “Circle lelt II” also

presents a puzzle. For some reason, in this
particular case, Escher drew a pattern of
lines somewhat different from that in Cox-

eter’s original drawing.. The main arcs .

seen in “Circle Limit III” meet the circum-
ference at a specific angle very close to 80
degrees rather than precisely 90 degrees.
Coxeter was-able to demonstrate that
each arc is of a type known to mathemati-
cians as an equidistant curve. It bears the
same relationship to a hyperbolic straight

-line-as‘alineoflatitude does to the equa-

tor on'the surface of a sphere.

" ‘When::Coxeter. worked ‘out trigono-
metrically: ‘what the proper angle of such
a curvein: Escher s print should be, he
obtained’79 degrées 58 minutes, again

draftsmanshlp

esides intriguing pro-
fessional mathemati-
cians, Escher’s Cir-
cle Limit prints and
their repeating pat-
terns prove to be
useful vehicles for
becoming com-
fortable with and
teaching hyper-
bolic geometry,
says Douglas J.
Dunham of the
computer sci-
ence  depart-
ment at the Uni-
versity of
Minnesota at Du-
luth. “Even to
mathematicians, .
hyperbolic geometry
is not that familiar,” he
contends. :

Dunham and his stu-
dents have written several
computer programs to gener-
ate hyperbolic patterns, particular-
ly those made up of repeating motifs col-
ored in various ways.

Mathematicians use a standard nota-
tion for describing a mosaic made up of
identical tiles, where each tile is a poly-
gon with a given number of edges of the

same length and the same number of cor-
ners or vertexes. On a flat surface, there
are three such tilings. A tiling in which six
equilateral triangles meet at each inter-
section is-designated {3,6}, one in which
four squares meet at each intersection is
{4,4}, and one in which three hexagons
meet at each intersection is {6,3}.

The same notation applies to regular
tilings of the hyperbolic plane. A tiling
where four pentagons meet at each vertex
is labeled.{5,4}. In general, for polygons
with p sides; meeting g at a vertex, the re-
sult i§'a hyperboli¢ tiling when (p - 2) mul-
tiplied by (¢~ 2) is greater than 4.

Escher’s “Circle Limit IV,” which fea-
tures interlocking devils and angels, is an
example of a {6,4} tiling. In other words,
the imdeérlyifig hyperbolic grid consists of
hexagons that meet four at each vertex.

Dunham has developed a computer
program that transforms a hyperbolic Es-
cher design from one tiling pattern to an-
other. For example, he can transform the
{8,3} pattern of crosses in “Circle Limit II”
into a strikingly different {10,3} tlhng,
where the central figure is a star.

The same pattern can be transformed
into an array of starbursts with any num-
ber of rays, Dunham notes. Indeed, there
is an infinite number of hyperbolic tilings
available for such transformations. The
use of different motifs and color schemes
increases the possibilities even further.

At a conference on mathematical con-
nectlons in art, music, and science held last

summer at South-
western
College

Escher’s
“Circle Limit

. 1" as seen in this
computer-generated rendition in gray
and white, has an underlying tiling
pattern in which four hexagons meet at
each vertex.
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He had worked with Celtic knot pat- pattern, then joining the two ends to so construct éxamples in which rings

0 terns, used centuries ago in Ireland and  form a continuous band. terlock in the over-and-under patte

* elsewhere to decorate religious texts. Dunham now has a computer program  characteristic of Celtic knots. o

. : o L Interestingly, Escher himself incorpor:

ed an intricate pattern of interlocking rin;

within a circular frame in his last woodct

“Snakes.” Dunham can show that this p:

tern is closely related to a hyperbolic vai

ant of a Celtic' weaving: Although Esch¢

and Dunham approached these patterr

from different perspectives; their intelle
tual common ground is apparent.

In a 1960 essay later translated and pul

lished in the book:The- Graphic Work «

. MC. Escher (1961, Duell, Sloan and Pearce

A pattern based

a computer-
| generated
= rendition of
4 Escher’s
= “Circle Limi;
" so that a
" pentagonal

Douglas Dunham has developed a computer program that can transform one
hyperbolic tiling pattem into another. In this case, he has used the program to convert
the crosses of his rendition of Escher’s “Circle Limit II” pattern (left)-into stars-(right).

¥ shape appear:
§ 5 78 inthe middle
s ~ instead of a square.

Eschernoted; “The ideas that are basic t¢
[my art] often'bear witness to my amaze
ment and wonder-at the laws of nature
which operatein the world around us.

- “By - keenly: confronting the enigmas
that surround-us,-and by considering &dnd
analyzing-the -observations that I have
made, I ended-upin the domain of mathe-
matics;”he‘continued. “Although [ am ab-
solutely-without training or knowledge in
- P RS “the exact’sciences, I often seem to have
A simple Celtic knot pattern (left). Such a woven:pattern can be converted into-an more: in' cominoti:with mathematicians
array of interlocking rings, then depicted using:hyperbolic geometry (right): - -~ than with tiy fellow artists.” O

SCIENCE NEWS, VOL.158 - DECEMBER 23 & 30, 2000




COMBINATIONS OF POLYGONS WITH THE TILING PROPERTY 2 = 360°

TABLE I £ = 360°

SIDE | DEGREES + + + + + + + + + + + A
3 60 1 1 1 2 3 2 1 1 4 6

4 90 1 1 1 2 1 2 4

5 108 1 2

6 | 120 1 2 3 1 1 )
8 | 135 1 2

9 140 1

10 [ 144 1 1

12 | 150 1 1 2

15| 156 1

18 | 160 1

20 | 162 1

24 | 165 1

The condition that at a vertex the sum of the angles of the participating polygons be 360°
is necessary but not sufficient for the combination to constitute a tiling configuration.
Those combinations marked with a + form tiling patterns.



Totally Tessellated: Regular Tessellations, page 4/4 Page 1 of 2
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B eular Tessellations (4/4)

The Regular Tessellations

tessellations of a single regular polygon
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Back Up Rext

Real examples of regular tessellations:

http://library.advanced.org/16661/simple.of.regular.polygons/regular.4.html 10/7/98
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& Regular Tessellatlons(4l4)
The Regular Tessellations S

tessellations of a single regular polygon
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http://library.advanced.org/16661/simple.of.regular.polygons/regular.4.html 10/7/98



Totally Tessellated: Semiregular Tessellations, page 4/4 Page 1 of 2
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E Seieguar Tessellations (4I4)

The Semiregular Tessellations

tessellations of two or more different regular polygons such
that the same polygon arrangement exists at every vertex

http://library.advanced.org/16661/simple.of.regular.polygons/semiregular.4.html 10/7/98



Totally Tessellated: Semiregular Tessellations, page 4/4 Page 2 of 2
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Real examples of semiregular tessellations:

To browse full-page F
templates of the Y ;
semiregular tessellations %
that are ready to be printed,
proceed to the templates page:

top of the page

http://library.advanced.org/16661/simple.of.regular.polygons/semiregular.4.html 10/7/98




Totally T'essellated: Semiregular 'l essellations, page 4/4 rage 1 o1 2
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& E Semiregular Tessellations (4/4)
The Semiregular Tessellations 3

tessellations of two or more different regular polygons such
that the same polygon arrangement exists at every vertex

3.12.12 46.12

http://library.advanced.org/16661/simple.of.regular.polygons/semiregular.4.html 10/7/98



Totally Tessellated: Semiregular Tessellations, page 4/4
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To browse full-page f
templates of the P
semiregular tessellations %=
that are ready to be printed,
proceed to the templates page:

top of the page

http:/library.advanced.org/16661/simple.of.regular.polygons/semiregular.4.html

Page 2 ot 2

10/7/98



Totally Tessellated: Templates Page 1 of 2

Semiregular Tessellation 3.12.12 (black large image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/semi.1.black.l.html 10/7/98




Totally Tessellated: Templates Page 1 of 2

Semiregular Tessellation 3.12.12 (gray large image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/semi.1.gray.l. html | 10/7/98




Totally Tessellated: Templates Page 1 of 2

Semiregular Tessellation 4.6.12 (black large image)
Totally Tessellated (@ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/semi.7 black 1 html 10/7/98




Totally Tessellated: Templates

http://library~advanced.org/16 tes/semi.6.black.[ html

/ 10/7/98



Totally Tessellated: Templates Page 1 of 2

Semiregular Tessellation 4.8.8 (black large image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/1666 1/templates/semi.8.black.1.html - 10/7/98



Totally Tessellated: Templates ' Page 2 of 2
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Totally Tessellated: Templates Page 1 of 2

Semiregular Tessellation 3.6.3.6 (black large image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

A S oo i N T F A N Lo

~ http://library.advanced.org/16661/templates/semi.6.black.l. html 10/7/98



Totally

aMgglng

-7

/ |

http:gﬁgwdyancedfo;gﬁmmp%afew 10/7/98




Totally Tessellated: Templates Page 1 of 2

_ - Semiregular Tessellation 3.4.6.4 (black large image)
‘ Totally Tessellated @ http://library.advanced.org/16661/
' Instructions: Print this page and then close this window.

\

/

http://library.advanced.org/16661/templates/semi.S.black.l.html 10/7/98




Totally Te ed: Tem : Page2 of 2
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http://librafy. advanced ore/T666 1 /templatesisemi. 1.black Lhtml 10/7/98




Totally Tessellated: Templates Page 1 of 2

Semiregular Tessellation 3.3.3.3.6 (black large image)
‘ Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

VAR VAN VAVAVAR

http://library.advanced.org/16661/templates/semi.2.black.l.html _ - 10/7/98



Totally Tessellated: Templates Page 1 of 2

Semiregular Tessellation 3.3.3.4.4 (black large image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

| L | | | L | |

\

http://library.advanced.org/16661/templates/semi.3 . black.l. html 10/7/98



Totally Tessellated: Templates | Page 1 of 2

Semiregular Tessellation 3.3.4.3.4 (black large image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/semi.4.black.l.html 10/7/98



Totally Tessellated: Demiregular Tessellations, page 2/2 Page 1 of 3

E | Demlregular essellatlons (2/2)

The Demiregular Tessellations

tessellations of regular polygons and that have exactly
- two or three different polygon arrangements

those with two different polygon arrangements:

‘ 3.3.6.6/36.3.6 3.12.12/3.4.312

3.3.3.44/3.46.4

3.3.3.3.3.3/3.3.4.34# 3.3.3.3.3.3/3.34.34#2

note that although the above two tessellations use the same
http://library.advanced.org/16661/of.regular.polygons/demiregular.2.html 10/7/98




Totally Tessellated: Demiregular Tessellations, page 2/2

polygon arrangements, they differ in their overall structure

3464/3446

3.464/46.12

Page 2 of 3

those with three different polygon arrangements:
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3.3.3.3.3.3/3.3.34.4/334.34# 3.3.3.3.3.3/3.3.34.4/3.3434#2

note that although the above two tessellations use the same
polygon arrangements, they differ in their overall structure

http://library.advanced.org/16661/of.regular.polygons/demiregular.2.html

10/7/98



Page 3 of 3

Totally Tessellated: Demiregular Tessellations, page 2/2

3.3344/33434/3464

3.3.3.3.3.3/3.34.12/3.3.434

3.34.34/33412/3.4.312

A real example of a
demiregular tessellation:

A

To browse full-page templates
proceed to the templates page:

of the demiregular tessellations
that are ready to be printed,

<

of the

to;

10/7/98

http://library.advanced.org/16661/of.regular.polygons/demiregular.2.html




Page 1 of 3

Totally Tessellated: Demiregular Tessellations, page 2/2

iregular Tessellat

ions (2/2)

Dem

14

ions

iregular Tessellat

The Dem

different polygon arrangements

tessellations of regular polygons and that have exactly
two or three

3.1212/3.4.3.12

3.366/36.36

3.3.344/3.464

3.3.3.3.3.3/3.34.12

V

3.4#2

4

3.3.3.33/33

3

3.33.33.3/3.3434#

note that although the above two tessellations use the same

http://library.advanced.org/16661/of regular. polygons/demiregular.2.html

10/7/98



Totally Tessellated: Demiregular Tessellations, page 2/2 Page 2 of 3

polygon arrangements, they differ in their overall structure

33434/3464 346.4/3446

3464/46.12

3.3.3.333/3.3344/33434# 3.3.3.3.3.3/3.3.344/3.3434#2

note that although the above two tessellations use the same
polygon arrangements, they differ in their overall structure

o9

http://library.advanced.org/16661/of regular.polygons/demiregular.2.html 10/7/98



Totally Tessellated: Demiregular Tessellations, page 2/2 Page 3 of 3

334.34/33412/34.3.12

Fatk L

A real example of a
demiregular tessellation:

To browse full-page templates ~_§

of the demiregular tessellations %L
that are ready to be printed,
proceed to the templates page:

top_of the page

http://library.advanced.org/16661/of. regular.polygons/demiregular.2.html 10/7/98
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Totally Tessellated: Templates

Demiregular Tessellation 3.6.3.6 / 3.3.6.6 (black large image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/demi.4.black.l.html

Page 1 of 2

10/7/98




Page 2 of 2

http://library.advanced.org t37black.l.html 10/7/98




Totally Tessellated: Templates

Demiregular Tessellation 3.12.12 / 3.4.3.12 (black large image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/demi.1.black.].html

Page 1 of 2

10/7/98



Page 2 of 2

http://library.a ced.org/16661/templates/semi.8.black.Lht 10/7/98




Totally Tessellated: Templates

Demiregular Tessellation 3.3.3.3.3.3 / 3.3.4.12 (black large image)

Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

Page 1 of 2

http://library.advanced.org/16661/templates/demi.2 black.l.html

10/7/98




Page 2 of 2

http://library.a oF 16661/templates/demi. 1 black.l.html ' 10/7/98




Totally Tessellated: Templates Page 1 of 1

Demiregular Tessellation 3.3.3.4.4 / 3.4.6.4 (black medium image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/demi.10.black.m.html 10/7/98




Totally Tessellated: Templates Page 1 of 1

Demiregular Tessellation 3.3.3.3.3.3 / 3.3.4.3.4 #1 (black medium image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/demi.7.black.m.html 10/7/98




http://library.advanced.org mt.2.black.1.html

Page 2 of 2

10/7/98




Totally Tessellated: Templates - S Page 1 of 1

Demiregular Tessellation 3.3.3.3.3.3 / 3.3.4.3.4 #2 (black medium image)
Totally Tessellated @ http:/library.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/demi.8.black.m.html 10/7/98




Page 2 of 2

Totally Tes QM

http,\: ibrary.advanced.org 6661/templates/semi.1.é?a\y‘.lfM 10/7/98
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Totally Tessellated: Templates

http://library.advanced.org/16661/templates/demi.11.black.m.html

Demiregular Tessellation 3.3.4.3.4 / 3.4.6.4 (black medium image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

Page 1 of 1

10/7/98



Totally Tessellated: Templates

Demiregular Tessellation 3.4.6.4 / 3.4.4.6 (black medium image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

\\ ]

Page 1 of 1

http://library.advanced.org/16661/templates/demi.12.black.m.html

10/7/98



Totally Tessellated: Templates

http://library.advanced.org/16661/templates/demi.3.black.l.html

Demiregular Tessellation 3.4.6.4 / 4.6.12 (black large image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

Page 1 of 2

10/7/98



Totally Tessellated: Templates

Page 1 of 2

Demiregular Tessellation 3.3.3.3.3.3 / 3.3.3.4.4 / 3.3.4.3.4 #1 (black large image)
Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/demi.S.black.]. html

10/7/98



Totally Tessellated: Templates Page 1 of 1

Demiregular Tessellation 3.3.3.3.3.3 / 3.3.3.4.4 / 3.3.4.3.4 #2 (black medium image)
' Totally Tessellated @ http:/library.advanced.org/16661/ ‘
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/demi.6.black.m.html 10/7/98 |



Totally Tessellated: Templates ~ Pagelofl

Demiregular Tessellation 3.3.3.3.3.3 / 3.3.4.12 / 3.3.4.3.4 (black medium image)
. ' Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/demi.13.black.m.html 10/7/98



Totally Tessellated: Templates

Demiregular Tessellation 3.3.3.4.4 / 3.3.4.3.4 / 3.4.6.4 (black medium image)

Totally Tessellated @ http://tibrary.advanced.org/16661/
Instructions: Print this page and then close this window.

http://library.advanced.org/16661/templates/demi.9.black.m.html

Page 1 of 1

10/7/98



http://library.advanced.org/16661/templates/demi.14.black.m.html

Demiregular Tessellation 3.3.4.3.4 / 3.3.4.12 / 3.4.3.12 (black medium image)
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Totally Tessellated @ http://library.advanced.org/16661/
Instructions: Print this page and then close this window.

™
:
]

L

K{/g |
/_ | e,
. el
\M.
™~ PN
ST
~
]
E -,
............. /
/ . » ]
| e
/ .
b . M < )

http://library.advanced.org/16661/templates/extra.2.m.html 10/7/98




X agvy &

Totally Tessellated: Templates

Extra Tessellation 43 (medium image)
Totally Tessellated @ http://library.advanced.org/ 16661/
d the is window.

Instructions: Print this page an

)
NS

10/7/98

tra.3 . html

http://library.advanced org/166061 /t.emplates/ ex



Totally Tessellated: Templates

lation #4 (medium image)
rary .advanced.org/ 16661/
his window.

Extra Tessel
d then close tt

Totally Tessellated @ http://1ib
Instructions:

print this page an

10/7/98

m.html

httpz//library.advanced.org/ 16661 fremplates/ extra.4.



TETRAHEDRON

DODECAHEDRON

OCTAHEDRON

47

ICOSAHEDRON




ARCHIMEDEAN POLYHEDRA

SMALL RHOMBICUBOCTHEDRON | GREAT RHOMBICUBOCTAHEDRON
(TRUNCATED CUBOCTAHEDRON)

CUBOCTAHEDRON ICOSIDODECAHEDRON SNUB DODECAHEDRON

SMALL RHOMBICOSIDODECAHEDRON GREAT RHOMBICOSIDODECAHEDRON
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The honeybee’s 'storage system consists of

oneybees know a thing or two about
_ working with wax and fashioning
L& idelegant, symmetrical structures.

Gorging themselves on honey, young
worker bees slowly excrete slivers of wax,
each fleck about the size of a pinhead.
Other workers harvest these tiny wax
scales, then carefully position and mold
them to assemble a vertical comb of six-
sided, or hexagonal, cells. The bees clus-
ter in large numbers, maintaining a hive
temperature of 35°C, which keeps the
wax firm but malleable during cell con-
struction.

This energetic, piecemeal activity pro-
duces a strong, remarkably precise struc-
ture. Each wax partition, less than 0.1
millimeter thick, is fashioned to a toler-
ance of 0.002 mm. Moreover, the cell
walls all stand at the correct 120° angle
with respect to one another to form a lat-
tice of regular hexagons.

Observers throughout recorded histo-
ry have marveled at the hexagonal pat-
tern of the honeybee’s elaborate storage
system. More than 2,000 years ago, Greek
scholars commented on how bees appar-
ently possess “a certain geometrical fore-
thought” in achieving just the right type
of enclosure to hold honey efficiently. In
the 19th century, Charles Darwin de-
scribed the honeycomb as a masterpiece
of engineering that is “absolutely perfect

60

o

an array of hexagonal cells precisely constructed from wax.

in economising liubour and wax.”

Biologists assunie that bees minimize
the amount of wax they use to build their
combs. But is a grid made up of regular
hexagons indeed the best possible choice?
What if the walls were curved rather than
flat, for example?

Mathematician Thomas C. Hales of the

University of Michigan at Ann Arbor has,

now f{ormulated a proof of the so-called
honeycowb conjecture, which holds
that a hexagonal grid represents the best
way to divide a suriace into regions of
equal area with the least total perimeter.
Hales announced the feat last month and
posted his proof on the lnternet at
http://www.math.Isa.umich.edu/~hales/.

Although widely believed and often
asserted as fact, this conjecture has
long eluded prooi, says Frank Morgan of
Williams College in Willlamstown, Mass.
Hales' proof "looks right to me,” he com-
ments, “although | have not checked
every detuil”

Last year, Haies proved Johannes Kep-
ter's conjecture that the arrangement
of the familiar piles ol neatly stacked
oranges at a supermarket represents the
best way to pack identical spheres tight-
ly (SN: §/15/98, p. 103).

If Hales’ proofs of the honeycomb and
Kepler conjectures stand the test of time,
“it's a remarkable double achievement,”

SCIENCE NEWS, VOL. 156

says physicist Denis Weaire of Trinity
College Dublin in Ireland.

;‘g n an essay on the “sagacity of bees,”
7 Pappus of Alexandria noted in the
fourth century A.D. how bees, pos-
sessing a divine sense of symmetry, had
as their mission the fashioning of honey-
combs without any cracks through which
that wonderful nectar known as honey
could be lost. In his mathematical analy-
sis, he focused on the hexagonal arrange-
ment of cells,

Although honeycomb cells are three-
dimensional structures, each cell is uni-
form in the direction perpendicular to its
base. Hence, its hexagonal cross section
matters more than other factors in calcu-
lating how much wax it takes to con-
struct a comb.

The mathematicians’ honeycomb con-
jecture therefore concerns a two-dimen-
sional pattern—as if bees were creating a
grid for laying out tiles to cover an infi-
nitely wide bathroom floor.

Mathematicians of ancient Greece
asked what choices bees might have if
they wanted to divide a flat surface into
identical, equal-sided cells. Only three
regular polygons pack together snugly
without leaving gaps: equilateral tri-
angles, squares, and regular hexagons.
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Other polygons, such as pentagons and
octagons, will not fit together without
leaving spaces between the cells.

The Greeks asserted that if the same
-quantity. of wax were used for the con-
struction of a single three-dimensional
version of the three candidate figures,
the hexagonal cell would hold more hon-
ey than a triangular or square cell. Equiv-
alently, the perimeter of a hexagonal cell
enclosing a given area is less than that of
a square or triangular cell enclosing the
same area.

Other possibilities for arrays of cells,
however, are conceivable. There’s no a
priori reason why the cells must all have
equal sides or identical shapes and sizes.
What about a crazy quilt of random poly-
gons or cells with curved rather than
straight sides?

Sorting through these alternative pat-
terns proved a formidable task for math-
ematicians.

It was relatively straightforward to estab-
lish that a regular hexagon, with equal
sides and 120° angles, has a smaller
perimeter than any other six-sided figure of
the same area. Moreover, polygons with
more sides than the hexagon, such as regu-
lar octagons, do better, and polygons with
fewer sides, such as squares, do worse.

In 1943, Hungarian mathematician
L. Fejes Toth proved the honeycomb
conjecture for the special case of filling
the plane with any mixture of straight-
sided polygons. In effect, Morgan says,
T6th established that the average num-
ber of sides per cell in a plane-filling pat-
tern is at most six. Moreover, the advan-
tage of having some polygons with more
than six sides is less than the disadvan-
tage of having some polygons with fewer
sides. Under these conditions, the least-
perimeter way to enclose and separate
infinitely many regions of equal area is
the regular hexagonal grid of the honey-
comb.

What if cells were allowed to have
curved sides? T6th considered the ques-
tion and predicted that the best answer
is still a grid of regular hexagons. “Never-
theless, this conjecture has resisted all
attempts at proving it,” he commented.

In recent years, Morgan has refocused
attention on the honeycomb conjecture
and related questions, such as the most
economical way of packaging a pair of
identical volumes as double bubbles (SN:
8/12/95, p. 101). In the May TRANSACTIONS
OF THE AMERICAN MATHEMATICAL SOCIETY, he
outlined progress in proving the hexago-
nal honeycomb conjecture and its vari-
ants, and he suggested a possible route
to a proof.

With curved sides, the complication is
that a side that bulges out for one cell
must bulge in for its immediate neigh-
bor. Bulging out helps minimize the cell
perimeter, while bulging in hurts.

Hales proved that the advantage of
bulging out is less than the disadvantage
of bulging in. “The basic idea is quite sim-
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ple and elegant,” says John M. Sullivan of
the University of [llinois at Urbana-Cham-
paign. Hales’ main result “shows that no
single cell can do better than a hexagon if

~appropriately penalized for having more

Weaire & Phelan/NATURE

/\

T
-

Two possible structures for the closed
end of a honeycomb cell. Mathematician
L. Fejes Téth showed that an end cap
consisting of two hexagons and two
squares (top left) requires a little less
wax than the one honeybees make, with
three diamond-shaped, or rhombic,
panels (top right). A honeycomb consists
of two layers of such cells placed back
to back so that a chamber on one side is
offset from its partner on the other side
(bottom).

than six sides or outward curves.”
Therefore, straight-sided polygons work
better than curved ones, and regular hex-
agons are truly best of all.
Bees have that aspect of their honey-
comb structures down pat.

L7 here’s more to a honeycomb than a
n¢  vertical, hexagonal grid, however. It
24 actually consists of two layers of
cells placed back to back. The cells
themselves are tilted upward at an angle
of about 13° from the horizontal—just
enough to prevent stored honey from
dripping out.

Instead of a flat bottom, each cell ends
in three four-sided, diainond-shaped pan-
els, meeting in a point like a pencil sharp-
ened with only three knife strokes. The
cells of the two layers are offset so the
center of a chamber on one side is the
corner of three adjacent cells on the oth-
er side. This allows the layers to inter-
lock like the bottoms of two egg cartons
fitted together. In the honeycomb, how-
ever, one layer of material serves as the
bottoms of two cells. I cross section, the
interface between the two layers has a
zigzag structure.

The angles of each diamond-shaped, or
rhombic, face of the cell bottom are 109.5°
and 70.5°. In the 18th century, mathemati-
cians proved that these particular angles
give the maximum volume for a three-

SCIENCE NEWS, VOL. 156

rhombus configuration.
In 1964, Té6th discovered that a combi-
nation of two hexagons and two squares

does a little better than an end cap of
“three rhombuses in terms of the efficient

use of wax. The difference, however, is
very small. “By building such cells, the
bees would save per cell less than 0.35
percent of the area of an opening (and a
much smaller percentage of the surface
area of a cell),” he concluded.

Several years ago, Weaire and his col-
league Robert Phelan experimented with
a liquid-air foam to test T6th’s mathemat-
ical model. They pumped equal-sized
bubbles, about 2 mm in diameter, of a de-
tergent solution between two glass plates
to generate a double layer.

The two layers of trapped bubbles
formed hexagonal patterns at the glass
plates. The interface between the two
layers adopted Téth’s structure.

When Weaire and Phelan thickened the
bubble walls by adding more liquid, how-
ever, they unexpectedly found an abrupt
transition. When the walls reached a par-
ticular thickness, the interface suddenly
switched to the three-thombus configura-
tion of a honeycomb.

The switch also occurs in the reverse
direction as liquid is removed.

So, honeybees may very well have found
the optimal design solution for the thicker
wax walls of their honeycomb cells.

For mathematicians, however, “many
questions remain open,” Morgan says.

In two dimensions, for example, mathe-
maticians can consider what happens
when they allow arrangements that in-
clude regions of several, intermingled
components or empty spaces between
cells. In three dimensions, the question of
what space-filling arrangement of cells of
equal size has the minimum surface area
is still not settled (SN: 3/5/94, p. 149).

“The strategies I developed for the Kep-
ler conjecture were very useful with the
honeycomb conjecture,” Hales says. “A
topic for future research might be to de-
termine to what extent [those methods]
can be adapted to other optimization
problems.”

These are matters that concern not on-
ly mathematicians but also researchers
interested in the characteristics and be-
havior of fluids, bubbles, foams, crystals,
and a variety of biological structures,
from cell assemblages to plant tissue.

“Cell and tissue, shell and bone, leaf
and flower, are so many portions of mat-
ter, and it is obedience to the laws of
physics that their particles have been
moved, moulded and conformed,” D’Arcy
W. Thompson wrote in his celebrated
book On Growth and Form, first pub-
lished in 1917. “Their problems of form
are in the first instance mathematical
problems, their problems of growth are
essentially physical problems.”

The honeybee’s honeycomb fits neatly
into the atlas of mathematically optimal
forms found in nature.
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athematics and art have
/ many points of conract,
4. but none is more beauti-
ful than the concept of symmetry. The
mathematician’s approach to symmetry
is a little too rigid for most forms of vi-
sual art, but it can be readily applied to
any art form that features repetitive
patterns. Wallpaper, fabrics and tiles
are familiar examples, and all of them
can rise to great artistic heights. Tiles
and wallpaper designed by 19th-centu-
ry British artist William Morris are dis-
played in London’s Victoria and Albert
Museum. The Edo-Tokyo Museum pos-
sesses some absolutely ourstanding ex-
amples of patterned kimonos, and the
Alhambra palace in Granada, Spain, is
renowned worldwide for irs intricate
tiled patterns.

Although the basic mathematics of
symmetry and tilings was worked out
long ago, new discoveries continue to
be made, often by artists. Rosemary
Grazebrook, a contemporary British
artist, has invented a remarkably simple
tiling system that is eminently practical
and different enough from the usual
rectangular tiles to be interesting. It is
also ingenious and, in the right hands,
beautiful.

The mathematical definition of sym-
metry is simple but subtle. A symmetry
of a design is a transformation that
leaves the design unchanged. For exam-
ple, the transformation “rotate by 90
degrees” leaves a square unchanged;
the transformation “reflect from left to
right” leaves the human form (super-
ficially) unchanged. A design may have
many different symmetries: together
they constitute its symmetry group.

There are also many kinds of tilings.
The type that has traditionally attracted
the most interest from mathematicians
is based on a two-dimensional lattice—
in effect, a planar crystal. Ironically, the
math here was first worked out in the
hugely difficult case of three dimensions
and only much later carried through in
two dimensions. In 1891 Russian crys-
tallographer E. S. Fedorov proved that
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latrices in the plane fall into 17 distinet
symmetry types [see illustration on
page 98]. The same goes for wallpaper
designs and texule patterns. It may
seem strange to say this when any home
improvement store can show you
dozens of thick books of wallpaper
samples and rack afrer rack of tiles. In
most cases, however, the differences lie
in such features as color, texture and
the nature of the underlying design ele-
ments. hportant as these are to the
customet, they do nor affect the symme-
try of the pattern, except that they may
be constrained by it. For instance, square
bathroom tiles bearing an image of a
duck will have the same symmetry as
similar tiles with the image of a length
of seaweed—unless extra symmetry oc-
curs in the images themselves.

Some patrerns do not possess any
great degree of symmetry, and these I
shall ignore here. Among them are im-
portant modern discoveries such as the
famous Penrose tiles, which completely
cover the plane but never repeat exactly
the same arrangement. The patterns of
concern here are based around one
“fundamental region”—a design that is
repeated indefinitely in two indepen-
dent directions. For example, imagine
an array of standard square tiles, as
seen In so many bathrooms. Our imagi-
nary bathroom, however, has infinitely
farge walls, so the pattern never stops.
Pick some tile. The pattern of that tile
repeats in both the horizontal and verti-
cal directions and in combinations of
those. In facr, if you displace the tile by
any whole number of tile widths hori-
zontally, to the lefr or the right, and
then by any whole number of tile

<7

PENTAGONAL TILES,
colored in the patterns shown above, can form a lattice tiling in conjunction with
regular bexagons (opposite page, top) or by themselves (opposite page, bottom).

widths vertically, up or down, yox’
find an identical tile. So the pattern re-
peats in two distinct directions. Here
those directions happen to be at right
angles to each other, but this is not a
general requirement.

The existence of two such directions
is what we mean by a lattice. Lattice
symmetry is natural for wallpaper and
textiles because they are usually made
by forming a long roll of material along
which the same pattern repeats over
and over again—perhaps printed by a
revolving drum or woven by a machine
that repeats a fixed loop. When the pa-
per is stuck to a wall or if the material
is sewn together to cover a wider re-
gion, it is usual to match the pattern
along the join. But this matching may
involve what interior decorators call a
“drop”: you slide the paper sideways
and then up or down by some amount.
If there is a drop, then the lattice re-
peats along two directions that are not
at right angles.

The lattice condition is less natural
tiles, which are made individually, but
is an easy scheme for an artist to follow
when placing them on a wall or a floor.
The square bathroom-tile lattice, for ex-
ample, has rotational symmetries
through 90 degrees. It also has reflec-
tional symmetries about vertical, hori-
zontal and diagonal lines that pass
through the center or vertex of each tile
or through the midpoint of each tile
edge. A “honeycomb” tiling by regular
hexagons is also a lattice, but it has dif-
ferent symmetries, notably rotations
through 60 degrees. For a more detailed
discussion of lattice patterns, see Sym-
metry in Chaos, by Michael Field and
Martin Golubitsky (Oxford University
Press, 1992).

Grazebrook discovered that a partic-

‘HRISTIE

Matbematical Recreations




15
i

By
-
Gg
Se'
@

|

it

b
,:l~"'
g.

%

BRYAN CHRISTIE

ular pentagonal tile can be the building
block of a multitude of lattice patterns.
A key feature of the tile is that it has
two angles of 90 degrees and three of
120 degrees, allowing the tiles to be
arranged in both square and hexagonal
lattices [see illustration on preceding
pagel. A square tile, in contrast, has
only 90-degree angles, so it can form
just a few distinct lattices. Four of
Grazebrook’s pentagonal tiles can be
fitted together to make a wide, short
hexagon, which tiles the plane like
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LATTICE PATTERNS

fall into 17 symmetry
types, first identified
in 1891 by crystallog-
rapher E, S. Fedorov.

bricks in a wall. When the pentagonal
tiles are augmented with regular hexa-
gons, they can form all but one of the
17 symmetry types of lattice patterns. (I
leave readers the pleasure of discover-
ing which is the missing symmetry type
and how to obtain the other 16.)
Grazebrook first got the idea for
these tiles from this very column—or,

more accurately, from its predecessor,

Martin Gardner’s inimitable Mathemat-
ical Games column. She was studying
for a Ph.D. at London’s Royal College

of Art, focusing on the Islamic att at the
Alhambra. She started a dissertation
entitled “From Islam to Escher and On-
wards ...”. (Readers are probably famil-
iar with the remarkable drawings of
M. C. Escher, many of which use ani-
mal shapes as tiles, arranged in mathe-
matical patterns.) Grazebrook sensed a
connection between Islamic art and Es-
cher’s characteristic tiling patterns, but
only after reading Gardner’s column did
she realize that the link is the theory of
the 17 lattice symmetry types. From
that point on, she began to explore
ways to make Islamic patterns using
various lattice-based grids.

Grazebrook introduced two distinct
schemes for coloring her pentagonal
tiles."One scheme divides the tile into
three triangles: this is called the “Pent-
fand” set. The other coloring scheme
divides the pentagon into four regions:
two squares, one kite-shaped quadrilat-
eral and a smaller pentagon. This is the
“Penthouse” set. Of course, it is possi-
ble to divide and color the tiles in many
other ways, but these sets alone can
form an amazing variety of designs.
The designs shown on the preceding
page are copyrighted, and the coloring
schemes are registered. To inquire
about the rights for their use, tile manu-
facturers can contact Grazebrook at P. O.
Box 328 IsLeworTtH, TW7 6FB, UK.

he column on coin tosses and

dice ["Repealing the Law of Av-
erages,” April 1998] attracted the at-
tention of Tom Guldbrandsen of
Lyngby, Denmark. Suppose you keep
rolling a die and observe the num-
ber of rolls that resultin 1,2,3,4,5 or
6. What is the probability that at
some stage all six totals are the
same? Guldbrandsen noted that this
event can happen only onrolls 6,12,
18 and so on—multiples of 6. He
found a formula for the probability
that on roll 6n the totals are all equal.
Taking account of the possibility
that they may be equal more than
once, he concluded that the proba-
bility is 0.021903735824 (to 12 deci-
mal places).The analogous result for
afive-sided die is 0.06469, for a four-
sided die is 0.2035 and for a three-
sided dieis 1. —IS.
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Fig. 4.6. Two examples

of periodic tilings of the plane, each using a single shape
(found by Majorie Rice in 1976).
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Fig. 4.8. A periodic tiling, illustrated in relation to its period parallelogram.

shared by many other single tile shapes and sets of tile shapes. Are there
single tiles or sets of tiles which will tile the plane only non-periodically? The
answer to this question is ‘yes’. In Fig. 4.10, I have depicted a set of six tiles
constructed by the American mathematician Raphael Robinson (1971) which

will tile the entire plane, but only in a non-periodic way.
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FIG'. 4.. A fragment of Penrose tiling in which the overlapping C-clusters are
indicated .w1th different shading in the central portion. The figure illustrates
t;lhe ver})f high C-cluster density (shown in our proof to be the maximal possible

ensity).
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Fig. 4.12. Two pairs, each of which will tile only non-periodically (‘Penrose tiles’);
and regions of the plane tiled with each pair.

.

1-periodically.

ile'tation, and

various operations of slicing and re-gluing, I was able to reduce it to two. Two
alternative schemes are depticed in Fig. 4.12. The necessarily non-periodic
patterns exhibited by the completed tilings have many remarkable properties,
including a seemingly crystallographically impossible quasi-periodic structure
with fivefold symmetry. I shall return to these matters later.
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n:=3,4.20

F(n) i=n -cos(-E) -sin(i)
n n

n= F(n) = F(n+100) =
3 1.2990381057 3.13964459
4 2 3.139681866
5 23776412907 3.139718082
5 2.5980762114 3139753278
7 2.7364101886 3.139787493
8 2.8284271247 3.139820761
9 2.8925442436 3.139853118
10 2.9389262615 3.139884507
11 2.973524496 3.13991523
12 3 3.139945045
13 3.0207006183 3.139974073
14 3.0371861738 3.14000234
15 3.0505248231 3.140029874
16 3.0614674589 3.140056698
17| 3.0705541626 3.140082838
18 3.0781812899 3.140108316
19 3.0846449574 3.140133154
20 3.0901699437 3.140157375
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F(N) = A()/R(n)*2

F(n + 1000) =

3.141572106

3.141572147

3.141572188

3.141572229

3.141572269

3.14157231

3.14157235
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3.141572589
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3.141572746

3.141572785
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POL ARER. mcp

AREAS OF REGULAR POLYGONS 5106 =
n:=34.20
A(n) = A (1) _: ©
4~tan<1) / Al =0
n
n= An)= ¢ A(n+ 16) = n+ 16 =

3 0.433012702| V3/% 28465189428 19

2 1 31.568757573 20

5 1.720477401 34.831474124 21

6 2.598076211| 3V3/2 38.253340245 22

7 3.633912444 41.834356853 23

8 4828427125 | 9 +VF 45 574524676 24

9 6.181824194 49.473844302 25
10 7.694208843 53532316204 26
11 9.365639907 57.749940772 27
12 11.196152423 | 3(3 #6 [ 62.126718325 28
‘ 13 13.185768328 66.662649129 29
14 15.334501936 71.357733407 30
15 17.642362911 76.211971345 31
16 20.109357969 81.225363101 32
17 22.735491898 86.39790881 33
18 25520768188 91.729608587 34
19 28.465189428 97.22046253 35
20 31.568757573 102.870470725 36
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SIDE =/

. = Q/mﬂ\e_m

G(n) = A(n)/P(N)"2  where P(n) = 1/4 tan A2 enfer fg. oy,

n:=3,4.20

G(n) !=n'tan<1>

n

n= G(n) = G(n+ 100) = G(n+ 1000) =
3 5.196152423 3.142567229 3.141602927
4 4 3.142548571 3.141602907
5 3.63271264 3.142530443 3.141602886
6 3.464101615 3.142512826 3.141602866
7 3.371022332 3.142495701 3.141602846
8 3.313708499 3.14247905 3.141602826
9 3.275732108 3.142462855 3.141602805
10 3.249196962 3.1424471 3.141602785
11 3.229891422 3.142431769 3.141602765
12 3.215390309 3.142416847 3.141602745
' 13 3.204212219 3.142402319 3.141602725
14 3.195408641 3.142388173 3.141602706
15 3.188348425 3.142374394 3.141602686
16 3.182597878 3.142360969 3.141602666
17 3.177850751 3.142347888 3.141602646
18 3.173885653 3.142335138 3.141602627
19 3.170539238 3.142322709 3.141602607
20 3.167688806 3.142310588 3.141602588
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POLRAD.MCD
RADH OF REGULAR POLYGONS

n:=3,4..20 Si0E =/
R(n) = 0
<inl ¥ e do 4 '
2 sm(;-) enter & W/,QL@
n= R(n) = R(n+16) = n+ 16 =
3 0.577350269 3.03776691 19
4 0.707106781 3.196226611 20
5 0.850650808 3.35475307 21
6 1 3.513337092 22
7 1.152382435 3.671971098 23
8 1.306562965 3.830648788 24
9 1.4619022 | - 3.989364878 25
10 1.618033989 4.148114905 26
11 1.774732766 4.306895074 27
12 1.931851653 4.465702135 - |28
13 2.089290734 462453329 29
14 2.246979604 4783386117 30
15 2.404867172 4.942258507 31
16 2.562915448 5.101148619 32
17 2.721095576 5.260054833 33
18 2.879385242 5.418975724 34
19 3.03776691 5.577910028 35
20 3.196226611 5.736856623 36
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G-ctable GCTABLE.MCD 07/08/01

G-c table #2
n horizontal, m vertical
a:=10.476821 n:=0,1.15 c vs G2
b :1=-3.587651 m:=0,1..8
K ‘=na-—mb
m,n
7
C
T 8 9 10 11 L2
0 73.337747 | 83.814568 | 94.291389| 104.76821 | 115.245031 | 125.721852
G_iz 1 76.925398 | 87.402219 97.87904 | 108.355861 | 118.832682 | 129.309503
¢~ 2| 80.513049 90.98987 | 101.466691 | 111.943512 | 122.420333 | 132.897154
K= 3 84.1007 | 94.577521| 105.054342 | 115.531163 | 126.007984 | 136.484805
4:| 87.688351| 98.165172| 108.641993 | 119.118814 | 129.595635 | 140.072456
‘5.1 91.276002 | 101.752823 | 112.229644 | 122.706465 | 133.183286 | 143.660107
‘6 94.863653 | 105.340474 1 115.817295 | 126.294116 | 136.770937 | 147.247758
‘7, 98.451304 | 108.928125 ] 119.404946 | 129.881767 | 140.358588 | 150.835409
8.1 102.038955 | 112.515776 | 122.992597 | 133.469418 | 143.946239 | 154.42306




