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NOTE29.WPD November 9, 2004
BASIC TIMES AND FREQUENCIES
[UPDATE BASEFREQ.WPD, 2002-11-27, # 62]
ITEM FORMULA LOG,, Seconds D-H-M-S HERTZ
electron Schuster 27y (r,/Gm,) -0.918814 0.120555 s 8.294954
baryon Schuster 2mv (r,/Gm,) -2.550769 0.002813 s 355.442210
hydrogen Schuster | 27V (a,/Gm,) +3.859735 2h 0m 39.94 s 0.0001381
earth Schuster 27/ (R./GM,) +3.704223 84m 20.84 s 0.0001976
earth Schumann 2nR /e -0.874433 0.133526s 7.489158
earth Schwarzschild | GM,/c? -10.829925 1.479364 x 10" s 6.759662 x 10"
earth Schwarz2 2GM/c? -10.528896 2.958721x 10™s | 3.379839 x 10%°
orbit Schumann 2n(A.U)/c +3.496286 52m 35.35 s 0.0003189
earth rotation © +4.9365137 86400 s 1.157407 x 10°
earth rotation v¥ +4.9353263 23h 56m 4.09 s 1.160576 x 10°
earth geosync 2n R /e -0.052906 0.885307 s 1.12955
neutron star apS t, -2.785412 0.001639 s 610.1154
sun Schuster 2n/ (R/GM,) +4.000163 2h 46m 43.75 s 0.00009996
sun Schumann 2nR/c +1.163661 14576760 s 0.068602
Sun Schwarzschild | GM/¢? -5.307523 0.000004928026 203012.6031
Sun Schwarz2 2GM, /¢ -5.006494 0.000009851583 101506.5343
Univ Schuster YR/GM,) +17.456065 3 9.056346 gyr
Univ Schumann R/c +17.456065 ¢ “
Univ Schwarzschild | GM,/¢? +17.456065 7 «
Y2 Univ 4.428173 gyr
3/2 Univ 13.584519 gyr
* This is the Schumann period at the distance R, = 42241 km (26,247 miles) for synchronous satellites in equatorial
Noter :
(carth Schuster)* = (carth rotation ), 14817=14810  A=0007  4-logl@8) 3 oy @D
(earth Schuster)/(hydrogen) = 0.699017 or 7/10 A =0.001
(log day) = (log hydrogen) x (log 19)  4.9365=4.9357 A=0.0008 [09@ w(\)3/,_, < logl @ )

(log hydrogen) = (log earth Schuster) x (log 11) 3.860=3.858 A =10.002
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TIMWEEK1.P51 DISK:TIME August 7, 1991 »
o N
A PHYSICAIL BASIS FOR THE WEEK ‘;cﬁ%&, #13 '
g5 # 54

Our basic units of time, the day, the month, and the year,
have their obvious origins in the rotation of the earth, the
revolution of the moon, and the revolution of the earth. Our
smaller units of time, the hour, minute, and second are derived
from numerically convenient but rather arbitrary divisions of the
day. The origin of the week as a unit of time, however, has always
been a bit of a puzzle. It has been suggested that it originated as
being a quarter of a month, but the month of lunar phases is not 28
days, but about 29.5 days, which over time renders the week a
rather poor unit for keeping track of the phases of the moon.

The week, however, has a non-astronomical origin in the
traditions of the Jewish people. God created the world in six days
and rested on the seventh. God then ordained the Sabbath and thus s
established the week as a unit of sacred time. In more modern times Manke?
this tradition seemed to be arbitrary to some would be reformers. (,c/e
Experiments with weeks of different lengths were attempted during
the French revolution and later during the Russian revolution.
Weeks of as long as 10 days and as short as 4 days were tried, but
the results were negative. There appears to be a basic cycle of
seven days that conforms with the human disposition. The seven day
week of ancient tradition, even though without astronomical origin,
' seems not to be arbitrary. doe l8mp2eT shifun reths
With such negative experimental results, the question arises
whether there might indeed be some physical basis for a seven day
cycle after all. Since no heavenly body is known that can provide
the basis for this period, perhaps we should look to the earth
itself for its origins. What periodicities are associated with the
earth besides its rotation and revolution periods? Are there other
basic terrestrial periods? d)One such basic period acquired
prominence when artificial satellites were first put into orbit.
This 1is the so-called ’‘Schuster Period’ -- the period of a zero-
altitude satellite. It is the time required for a satellite to
orbit the earth at the earth’s surface, which is determined by the
size and mass of the earth.

The Schuster period 1is a limiting period. It is the wuw*”
theoretical shortest possible time for any satellite operating .o
solely under the influence of natural forces to orbit the earth.
Its value is a few seconds over 84 minutes. But because of the ‘
earth’s atmosphere, no practical satellite could have that short a /g pe- ™
period. Practical satellites must operate above the bulk of the
atmosphere and the greater the altitude the longer the orbital
period. The length of orbital period increases from 84 minutes at
the earth’s surface to 24 hours at the ‘synchronous distance’ of
about 22,000 miles, where most communications satellites are

’ located, to roughly 30 days at the distance of the moon.
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Another interesting property of the Schuster period is that if
there were a hole passing through the center of the earth and there
were no atmosphere to create drag, a weight dropped in the hole
would take exactly half a. Schuster period to emerge with zero
velocity at the antipode. In the absence of any frictional drag,
the weight would oscillate back and forth from antipode to antipode
in 84 minutes. In fact the hole would not even have to pass through
the center of the earth. With no friction a hole tunneled along any
chord through the earth would support the same period of
oscillation—84 minutes. It is thus seen that this value of 84
minutes is intimately associated with the earth. It is indeed,
along with the day and year, a basic terrestrial period. .

5 s

The precise value of the earth’s Schuster period is 5042.519
seconds or 84m 2.5s which is the same as 1hr 24m 2.5s. Now comes
another interesting property of the Schuster period. There are
exactly 120 Schuster periods in one week. The error being less than
one part in 2000. This tells us that the earth’s Schuster period
and the earth’s solar rotation period are integrally.connected and
are in phase at one instant every seven days. Thus the week does
have a basis in nature. It is the minimum time required for the
rotation period and the Schuster period to return to the same
phase.

When I worked for an aerospace company we had an allotted
lunch hour of 42 minutes. I presumed that management was displaying
their knowledge of orbital mechanics to impress us we lived in the
space age, but curiously 42 minutes seemed to be just the right
amount of time for an on site lunch. I have also noticed that in
several areas the post office allows 21 minutes parking. Where does
the post office get this figure? The time for a weight to fall to
the center of the earth doesn’t seem connected to the speed of
postal service, but it has worked out fairly well (except during
the Christmas season). However, the interesting questions are how
such an invisible period came to be incorporated into the ancient
tradition of a non-technical people; and what is there about the
size and mass of the earth that humans seem to sense without
instruments and theories?

But there 1is also a caveat. There are many calendar reform
plans in the wings to simplify the fitting together of months,
quarters, and the year. Most of these interject ’free days’ two or
more times a year, days that would not belong to any of the seven
days of the week. Such reforms would destroy the millennia old
record of the phase relation between the rotation and gravitation
of the earth as mapped onto the days of the week. The week must
remain inviolate in accord with how it was established and
preserved for thousands of years in the Jewish tradition and later
passed on as a heritage for all mankind.
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TIMWEEK2 .W52 DISK:TIME January 31,

MORE ABOUT THE WEEK

In TIMWEEK1.P51, (1991-#88),

1994

several properties of the Schuster

period were mentioned. To those reported there should be added

the very important property of
earth not to disintegrate. For

exceed
unstable with mountains flying
is that we have a considerable
occurring. One rotation period
period is 84 minutes, giving a
1440

equatorial fragmentation. The

Schuster period is the limiting rotational period for a rotating

the earth to rotate with a period

shorter than 84 minutes, centrifugal force at the equator would
;hé'gravitational pull,and the planet would become

off into space. But the good news
"spin safety factor" against that
is 1440 minutes, the Schuster
safety factor of

120 _ 1oare 1777

@\

"

o
-

84

This ratio#fi of 120/7 is also
in a week. Hence the earth’s
the seven day week.

7 v

We have seen that the week is the smallest number of earth

07

ht

the ratio of Schuster periods to days
spin safety factor is implicit in

rotation periods with an integral number of Schuster periods. But

also of interest are the "beat periods" between the Schuster
cycle and the rotation cycle. Beat frequencies, f,, are given by

£, £ £, = £
where f, and f, are the Schuster and rotational frequencies
respectively. Substituting 5/7 hours and 1/24 hours, we get beat

periods of 1" 29™ 12° and 1"

19™ 22°

These values are very

close to 3/2 hour and 4/3 hour, which divide the 24 hour day into
16 and 18 intervals respectively. It seems that again the
ancients were in touch with something we have lost. The division

of daylight time into 9 "hours" was an ancient practice.

reflected in the Prime, Terce,
Did this division of time into

come from subtle or overt experience of ﬁﬁé

periods?
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ROTGRAV.W52 DISK:TIME February 17, 1994

SYNCHRONIZATION OF THE EARTH'S ROTATIONAL
o/ F SR
AND GRAVITATIONAL PERIODS oA s
o MAEgy
: # 5y
Four basic periods are associated with the earth: The revolution
period of one year, the lunation period of one month, the
rotation period of one day, and the gravitational (or
Schuster)period of 84 minutes(plus a few seconds) Since these
various periods have no simple integral multiples, there is the
problem of commensuration, or finding the simplest ratios of
their values. For example, since ancient times solutions to the
problem of when the full moon will occur on the same calendric
date have been sought. One answer was the Metonic Cycle of 235
lunations = 19 years. (235 synodical months = 6939.6882 days,
while 19 years = 6939.6018 days, the difference being 2h 4m 24s)
In the western hemisphere, the Mayans found that 81 moons = 2392
days before the moon appeared in the sky at the same phase at the
same time.

The same problem arises in determining the synchronization of the
mean solar day with the earth's G-period. To a first
approximation the G-period of the earth is 84 minutes. This walue
synchronizes exactly with the 24 hour rotation period of the
earth every seven days. That is 120 x 84 minutes = 7 x 24 x 60
minutes = 10080 minutes. Is it possible that this first
approximation to G-period solar day synchronization could be the
basis of the week? The question arising here is in what manner
did ancient humans sense the G-period.

But the value of the G-period is not exactly 84 minutes. Using
the present most probable value for the earth's density of 5.517
+ 0.004 gm/cm®, the G-period is about 84 minutes and 19.61 + 1.83
seconds. This means that there is not precise synchronization
every seven days, but there is an error of approximately 120 x 20
= 2400 seconds (40 minutes)each week. This value is approximately
half a G-period, so we would expect a better approximation to be
a fortnight. Actually a minimum synchronization error of 33.4
seconds occurs in 13 days. But this error is accumulative so an
exact synchronization, if any, will occur only at some much
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To find synchronization periods it is necessary to solve the g

Diophantine equation

N, x CYCLE, = N, x CYCLE,
where N, and N, are integers. For the choice of cycles, G-period
and day, we get the following table:
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/34

" DENSITY PERIOD No, G~PERIOD DAYS ERROR
|| 5.517 84m+19.609s 222 13 +33.3s
" 5.513 84m+21.445s 973 57 -14.3s
|| 5.521 84m+17.776s 205 12 +44.1s
H 5.51733 84m+19.3495 222 13 +0.009s
§Ssiyy GHmt I, 156 122,09+ 230 ]

The density value of 5.51733, differing very slightly from the
most probable value, gives an almost exact synchronization of the
day and G-period every 13 days. With this value the maximum error
in the 13 day cycle occurs on the seventh day. So, the new twist
would be that synchronization does not occur on the seventh day
as it would if the G-period were exactly 84 minutes, but that the
times get most out of synch on the seventh day. God in creating
the world realized that the synch error was increasing every day,
and at the end of the sixth day He felt things were getting out
of hand, so decided to take the next day off. Things began to
improve on the eighth day, but we aren't sure what God did in the
second week.




ENGLISH

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

RUSSIAN

BOCKPECEHBE
[NOHEJEJILHUK
BTOPHUK
CPEJIA
YETBEPT
[TATHULIA
CYBBOTA

POLISH

NIEDZIELA
PONIEDZIALEK
WTOREK

SRODA
CZWARTEK
PIATEK
SOBOTA

SAXON

SUN'S DAY
MOON'S DAY
TIW'S DAY
WODEN'S DAY
THOR'S DAY
FRIGG'S DAY
SETERNE'S DAY

GREEK

KYPIAKH
AEYTEPA
TPITH
TETAPTH
OeMIITH
IAPAZKEYH
LABBATOM

HEBREr

REE§HOHN
SEAYNEE
SHLEFIHFE
REMYLERE
KHAHMERLSHRE
SHEFSHEF
SPAp BART

2

DAYS OF THE WEEK

GERMAN

SONNTAG
MONTAG
DIENSTAG
MITWOCH
DONNERSTAG
FREITAG
SAMSTAG

SWEDISH

SONDAG
MANDAG
TISDAG
ONSDAG
TORSDAG
FREDAG
LORDAG

LATIN

DIES SOLIS
DIES LUNAE
DIES MARTIS
DIES MERCURII
DIES JOVIS
DIES VENERIS
DIES SATURNI

ITALIAN

DOMINICA
LUNEDI
MARTEDI
MERCOLEDI
GIOVEDI
VENERDI
SABATO

FRENCH

DIMANCHE
LUNDI
MARDI
MERCREDI
JEUDI
VENDREDI
SAMEDI

JAPANESE

NICHIYOUBI
GETSUYOUBI
KAYOUBI
SUIYOUBI
MOKUYOUBI
KINYOURBRI
DOYOUBI

SPANISH

DOMINGO
LUNES
MARTES
MIERCOLES
JUEVES
VIERNES
SABADO

JAPANESE
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MOREWEEK.WPD APRIL 10, 2000
see also 1991 #88; 1994 #7, #13, #15

STILL MORE ABOUT THE WEEK

It has been noted that in looking for a natural cycle related to the week, that it is the earth
itself, not the moon or some other planet, that provides the cycle. Indeed, it is the relation
between the day and the earth’s Schuster period that gives us a cyclical basis for the week. The
Schuster period is related to the mass and size of the earth and is the time period in which a
satellite would circle the earth at its surface were there no atmosphere or other obstructions. It is
the limiting value of time that Kepler’s third law would assume for a minimum orbital radius. In
this case the minimum orbital radius being the mean radius of the earth itself. The Schuster time
T is given by,

R3
GM

T=2n

where R is the earth’s mean radius, G is Newton’s constant, and M is the mass of the earth.

Value in seconds log,, value in
seconds

T The earth’s Schuster Period 5042.51897 3.7026475

The earth’s sidereal day 86164.09054 4.9353264

D The mean solar day 86400. 4.9365137
First note the ratios: T1=07 S T
log T = 0.7502326 log T=07500531 = o Fraclal cimensioe.

log S log D

Indicating that to within about 5 parts in 10° the ratio of the logarithms of the Schuster period to
the day is 3 to 4. An example that many of the astronomical period or frequency ratios are
between log values, unlike ratios of frequencies in music. T - 0o
P 7
Next note the following values:
The first solution to the diaphantine equation M x T=Nx D gives M =120 and N=7.
D/T=17.134294,  120/7=17.142857, with 0 =0.009 or 9 parts in 10’
Seven days is equal to 604,800 seconds, 120 Schuster periods is equal to 605,102.27 seconds,
the difference being 302 seconds or just over five minutes.
302/604,800 = 0.0004993 or 5 parts in 10°

It is accordingly suggested, without a mythic explanation regarding the origin of the
week, that somehow humans tuned in on this basic relation between these two fundamental
natural cycles.




COSCUR2A.WPD December 9, 2007

COSMIC CURIOSITIES PART I

THREE TERRESTRIAL CYCLES

EARTH Value in seconds | log,, value in seconds
T The Schuster Period 5058.40 3.704013
D The mean solar day 86400.00 4.936514
S The mean sidereal day 86163.9 4.935325

Note that log,,(T)/log;,(D) = 0.750330 which to about 3 parts in 10* is equal to 3/4.

log,, T*= 14.816 log,, D’ = 14.810

log,o(T)log,,(S) = 0.750510

The Schuster period is determined by the mass M and radius R of the earth and is the time period
in which a satellite would circle a spherical earth at its surface were there no atmosphere or other
obstructions. T =21V (R/GM)
The mean solar day is the rotation period of the earth with respect to the sun.
The mean sidereal day is the rotation period of the earth with respect to fixed stars.

The above values are derived from a mean earth radius 6.371000 x 10® cm and Earth mass of
5.9737 x 10?7 g [Cox, Astrophysical Quantities 1999]
log, ;R = 8.804 207 605 log, M= 27.776 243 408 log,,G = -7.175296

SUN Value in seconds log,, value in seconds
T The Schuster Period 10003.754 4.000163
S The rotation period 2192832 6.343335
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MAYAN.WPD JULY 29,2000

STILL EVEN MORE ABOUT THE WEEK
see also 1991 #88; 1994 #7, #13, #15; 2000 #22

It was shown in Scrap 2000 #22 that the relation between the earth’s rotation period (the |
24 hour solar day) and the earth’s Schuster period, T=2T ¥ (R*/GM), could be taken as the |
basis for the seven day week.!

Value in seconds’ log,, value in seconds
T The earth’s Schuster Period 5060.24 3.704171 ‘
D The mean solar day 86400.00 4.936514 |
H The Hydrogen Period 7239.07 3.859683

First note the ratio:
log T =0.750361 = 3/4
log D
Indicating that to within about 4 parts in 10* the ratio of the logarithms of the Schuster period to
the day is 3 to 4. In other words, (5060.24)" =17.168 and (86400)"* = 17.145, A =0.023
or (5060.24)* = 655,668,714 x 10° and (86400)° = 644,972,544 x 10° ; whose ratio is 1.0166
or (5060,24)*° = 86875 and (86400)** = 5039.48; Hence T'=D’.

For seven days, assuming 120 Schuster periods, 7 x 86400 = 604800 seconds and

120 x 5060.24 = 607229 seconds, an error, A = 2429 seconds (48 m 40s) in seven days.
Possibly a basis for a seven day week.

However,

For thirteen days, assuming 222 Schuster periods, 13 x 86400 = 1123200 seconds and
222 x 5060.24 = 1123373.28 seconds, an error, A = 173 seconds (2 m 53s) in 13 days.
A very good case for a thirteen day week.

And where has there been a thirteen day week? The ancient Maya used a basic thirteen day

period and from their vigesimal number system of base 20 derived a sacred “year” of 260 days. L 72 ¢ £ i« (w5

We know that the Maya were good astronomers deriving a calendric year more accurate than our

present Gregorian year. So maybe they were also good geophysicists recognizing the relation

between the earth’s Schuster period and the earth’s solar rotation period. 3/, -
360 Doy - Tk

Fesday:haak

'"The Schuster period is determined by the mass M and radius R of the earth and is the
time period in which a satellite would circle a spherical earth at its surface were there no
atmosphere or other obstructions.

*These values are derived from a mean earth radius 6.371000 x 10% cm and
Earth mass of 5.9737 x 10* g [Cox, Astrophysical Quantities 1999] ; and
G =6.674215x 10® cm’/g s> [Physics Today July 2000 p 21]
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EVEN MORE ON THE ORIGIN OF THE WEEK

Nine hundred million [ 9 x 10® ] years ago the length of the day was 18 hours. In
subsequent time the tides, largely lunar, have gradually slowed the turning rate of the earth
increasing the length of the day to the present 24 hours. To balance the resulting decrease in the
earth’s angular momentum, the angular momentum {MR?/T} of the earth-moon system has
changed. This has resulted in the moon moving further away from the earth at a rate of about
3.82£0.07 cm/year.! Observations [eg radar ranging of the lunar distance] and calculations [eg
records of times and places of ancient eclipses] indicate that the rate of increase in the length of
the day has been:

2.43 + 0.07 muilliseconds per century from 390 BCE to 948 AD. and
1.40 £ 0.04 milliseconds per century from 948 AD to 1800 AD ?

In addition to the rotation period, [length of day], a second important period associated
with the earth is the so called “Schuster Period”, the time it would take for an artificial satellite
to orbit the earth at its surface if the earth were an airless smooth sphere. This period, T, is a
function of the mean density of the earth, p, and is given by, T =(G p) ™, where G is
Newton’s gravitational constant

Table I gives the values of the Schuster period in seconds corresponding to the best

’ estimates of the earth’s mean density in gm/cm’.
TABLE 1
DENSITY 5.513 5.517£0.004 5.521
PERIOD 84m + 21.439s 19.609 £ 1.83 s 17.779 s

Using the present most probable value for the earth's density of 5.517 gm/cm’, the
Schuster period is close to 84 minutes and 19.61 seconds. If we take this value as being constant
over millions of years, we ask at what dates in the past or in the future will the ratio of the
rotation period to the Schuster period have small rational values. That is, what are the smallest
integers N, and Nj that are solutions of the Diophantine equation,

N; x (Length of Day) = Ng x (Schuster Period)

! K. R. Lang, ASTROPHYSICAL FORMULAE Vol II p. 80

? Ibid p. 80



MOONMAYA.WPD June 15, 2004

SATELLITES
THE MOON AND THE MAYANS

One of the puzzling questions about the Mayan calendar and their system of time has
been the origin of their 260 day “TUN”. This period does not seem to have-any-astrenqmical —
basis, as does their “HAAB” which corresponds to our year. But tun was as important as haab in
the Mayan reckoning of time.

It has been shown in a previous scrap [2000 #43] that the tun could have been the product
of their vigesimal, base 20, number system and their selection of 13 days for the week. The
origin of the latter could have been the close resonance between the earth’s Schuster period' and
its rotation period. It was noted that the error between seven rotation periods of 86,400 seconds
and 120 Schuster periods of 5059.61 seconds is 2353 seconds. While the error between thirteen
rotation periods and 222 Schuster periods is only 33 seconds. This would make a good case for
a 13 day week instead of a 7 day week, provided that the Schuster period is the geophysical
cycle basic to the week.

Comparisons for the tun:
Twenty 13 day weeks = 260 days; the error to 4440 Schuster periods is 668 seconds.
Thirty seven 7 day weeks =259 days: error to 4423 Schuster periods is 1055 seconds.
[In both cases the Schuster values exceed the rotational values]

But there is another possibility for the origin of the tun.

The lunar sidereal period is 27.3217 days. Nineteen of these periods equals 519.1123 days.
This is an error of 0.8877 days in two tuns or less than a half day per tun.

So if we wish to pick a number of days that closely represents several cycles.
From the Schuster cycle and a 7 day week 259  days
From the lunar sidereal cycle 259.56 days
From the Schuster cycle and 13 day week 260  days

The tun is a useful choice.

! The Schuster Period, t, is the limiting value in Kepler’s third law, t* = d*/GM, when
the distance, d, is taken as the distance from the earth’s center to its surface and where M is the
mass of the earth. It is the time a satellite would take to circle the earth at the surface if the earth
were a smooth sphere with no atmosphere. Or if there were a hole through the earth, it is the time
an object would require to make a round trip through the hole.
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Learn how to obtain essential
nutrients from healing quality
foods. How to balance your meals
and transform your moods. How
diet is related to disease, and How
the macrobiotic approach extends
beyond the individual to include
benefits for the social and natural

order.

macrobiotics

at the Ginkgo Leaf
21109 Costanso
Woodland Hills
818/716-6332
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Learn how to obtain essential nutrients from
healing quality foods. How to balance your
meals and transform your moods. How diet
is related to disease, and How the
macrobiotic approach extends beyond the
individual to include benefits for the social
and natural order.

macrobiotics

at the Ginkgo Leaf
21109 Costanso Woodland Hills
818/716-6332
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0036

SCHUSTER PERIOI/DAY RESONANCES

MOST PROBABLE |84 MINUTE MINIMUM VALUE | MAXIMUM VALUE
5059.5 SEC 5040 SEC 5042.5 SEC 5069.7 SEC

1]17.07679| 17.07679| 17.14286| 17.14286| 17.13436 | 17.13436| 17.04243 | 17.04243

2 34.15357 34.28571 34.26872 34.08486

3 51.23036 51.42857 51.40307 51.12729

4 68.30714 68.57143 68.53743 68.16971

5 85.38393 85.71429 85.67179 85.21214

6 102.4607 102.8571 102.8061 102.2546

7 119.5375 120| .9495 | 119.9405 119.297

8 136.6143 137.1429 137.0749 136.3394

9 153.6911 154.2857 154.2092 163.3819
10 170.7679 171.4286 171.3436 170.4243
11 187.8446 188.5714 188.4779 187.4667
12 204.9214 205.7143 205.6123 204.5091
13 —> 1221.9982 222.8571 222.7467 221.5516
14 239.075 240 .1190| 239.881 238.594
15 256.1518 257.1429 257.0154 255.6364
16 273.2286 274.2857 274.1497 272.6789
17 290.3054 291.4286 291.2841 289.7213
18 307.3821 308.5714 308.4184 306.7637
19 324.4589 325.7143 325.55628 323.8061
20 341.5357 342.8571 342.6872 340.8486
21 358.6125 360 3569.8215 357.891
22 375.6893 377.1429 376.9559 374.9334
23 392.7661 394.2857 394.0902| ,Q2 4/ |391.9759
24 409.8429 411.4286 411.2246| :0/%3 |409.0183
25 426.9196 428.5714 428.3589 426.0607
26 443.9964 445.7143 445.4933 443.1031
27 461.0732 462.8571 462.6277 460.1456
28 478.15 480 479.762 477.188
29 495.2268 497.1429 496.8964 494.2304
30 512.3036 514.2857 514.0307 511.2729
31 529.3804 531.4286 531.1651 528.3153
32 546.4572 548.5714 548.2995 545.3577
33 563.5339 565.7143 565.4338 562.4001
34 580.6107 582.8571 582.5682 579.4426
35 597.6875 600 599.7025 596.485
36 614.7643 617.1429 616.8369 613.5274
37 631.8411 634.2857 633.9712 630.5699
38 648.9179 651.4286 651.1056 647.6123
39 665.9947 668.5714 668.24 664.6547
40 683.0714 685.7143 685.3743 681.6971
41 700.1482 702.8571 702.5087 698.7396
42 717.225 720 719.643 715.782
43 734.3018 737.1429 736.7774 732.8244
44 751.3786 753.9118 749.8669
45 771.0461 766.9093
46 788.1805 783.9517
47 805.3148| .¢ 059 |800.9941
48 822.4492 818.0366
49 839.5835 835.079
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EXPLORING CHON

Aristotle held that time was an inference of motion. But there
appears to be a species of time that is not derived from motion.
This time is associated with the density of matter and manifests
as a zeitgeber that governs local clock rates. Its period is
inversely proportional to the square root of the mass density. A
familiar example is the Schuster Period, a bound on the period of
an earth orbiting satellite when only gravitational and inertial
forces are acting. This period of approximately 84 minutes is
numerically related to the mean density of the earth and to the
universal gravitational constant,G. In general the lower limit to
orbiting periods is given by,

(1) t=2m | 2o
GM

Where R is a size parameter (radius) and M is a mass parameter.
It is seen that equation (1) is a bounding case of Kepler's third
law. For a spherical body, this boundary time, 1, in terms of

the mean density p, is given by,

(2) =130
\Jap

Equations (1) and (2) are usually applied to astronomical bodies
and since gravity is a force weaker than other forces by some 40
orders of magnitude, it seems quite inappropriate that these
equations contain anything of significance for bodies where
gravity plays no detectable role, in particular for micro objects
such as atoms and sub-atomic particles. There is, however,
nothing known that precludes the universal applicability of these
equations. At first thought, when applied to objects on the ]
atomic level, it would seem the results would be insignificantly
small. Remembering, though, that we are dealing with time, not
size or force, this is not the case. Coulomb times are of the
order of 107'® seconds. If the ratio of force strengths between
coulomb and gravitatonal forces is of the order of 10‘° then the
ratio of gravitational times to coulomb times must be of the
order of 10?° leading to atomic graviational times of the order
of 10’ seconds.

As an example, take for size the Bohr radius, a,, and for mass
the proton mass, m,. The time 14, turns out to be almost exactly
2 hours! Explicitly,




/b

PAGE 2

a
(3) 1,20 G° = 7239,94sec = 2hours 40seconds
m
P

Another example is the Schuster time for an electron. Using r.,
the electron radius and m,, the electron mass, the Schuster
period is given by,

(4) T, = 0.121sec

which is about one-eighth of a second, again in the time frame of
daily experience as this is an important time interval for human
visual perceptions.

A third value of possible physiological interest is the time
given by the Schuster period of the proton:

r3

(5) T = 2m 2 = 2.813 millisec
P Gm
f4
The time values given in equations 3), 4), and 5), since they are

present in every atom or organic molecule, may play the role of
zeitgebers in physiological processes.

Noting the near coincidence of the hydrogen gravitational time of
two hours with twice the culturally employed time unit derived
from the earth's rotation period, we are led to surmise that
micro gravitational times may play some hitherto unsuspected
role. On the basis of the result for atomic hydrogen it seems
relevant to go further and inquire how equation(l) might be
applied to other atoms.

The correct value to be used for mass in equation(l) is likely to
be a function of the atomic weight of the atom. But the value to
be used for the size (radius) in equation(l) is uncertain as we
are dealing with gravitational rather than coulomb effects.

One approach 1s to note that the relation between density and

mass for some larger bodies, planets, stars, etc., is that the
density is roughly proportionallto the reciprocal of the mass,
o « M.

Alternate Assumption 1] We provisionally assume the same for
atoms, that the density varies inversely with the mass. This is
equivalent to M? = R’ . Substituting (KGM)? for R’ in
equation(1l), we get,
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(6) T =21 Jf%%?— = 2mK>/%,/GM

That is, the period 1 is approximately proportional to the
square root of the mass. This leads to,

) T _ 2nk**feM _ JM _ - VA
Ty  2mK>? [Gm, \/_

where A is the atomic weight.
Using this result, 1, = 1WA, we can construct the following
table:

ELEMENT ATOMIC WEIGHT YA SCHUSTER PERIOD
HYDROGEN 1.0080 1 2hr Om 40sec = 1/12 day
CARBON 12.0112 3.47 6.98 hr
NITROGEN 14.0067 3.74 7.52 hr
OXYGEN 15.9994 4 8.04 hr

The values in the table are within less than half of a percent of
7 hours for carbon, 7.5 hours for nitrogen, and 8 hours for
oxygen. These periods are closely commensurate with the rotatlon
period of the earth as given in the second table.

ATOMIC COMBINATIONS PERIODS
241, = 168hr 7 days
161,y = 120hr 5 days
3T, = 24hr 1 day

It should be noted that the elements most abundant in and
important to living organisms give rise to periods nearly
commensurate with the earth's rotaton. Are the periods of these
atoms in animal and human cells the zeitgebers for circadian
rhythms?

A second possible approach to the question of the proper radius
to employ for gravitational times is to assume that all atoms in
ordinary state have the same gravitational potential. This
assumption is equivalent to: size is proportional to mass.
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Alternate Assumption 2] Assume for atoms in organic molecules
that size is proportional to mass, R = KGM. Substituting KGM for
R in equation 1) gives,

(KGM) 3
GM

(8) T = 21 = 2nK3/'26M

That is, the period 1 for ordinary matter is closely
proportional to the mass, and since 1, = 2HK”2Gmp,
(9) — S ———— . F . = A

where A is the atomic weight. Using this result, 1, = A1y, We can
construct the following table:

ELEMENT ATOMIC WEIGHT SCHUSTER PERIOD
HYDROGEN 1.0080 2hr Om 40sec = 1/12 day
CARBON 12.0112 24hr 9Sm 20sec = 1 day
NITROGEN 14.0067 28hr 10m 7sec = 7/6 day
OXYGEN 15.9994 32hr 10m 33sec = 4/3 day
POTASSIUM 39.102 78hr 38m l1l6sec = 13/4 day

Again the values in the table are (with the exception of
potassium) close approximations to periods commensurate to common
astronomical periods. Resulting values in days are given in the
following table.

ATOMIC COMBINATIONS PERIODS
11, = 121y Tey = 1 day
TTey = 6Ty Ty = 7 days
4Teyy = T1g Tepon = 28 days
13Tehony = 112714 Teuongk = 364 days *

Again we note that the elements most abundant in and important to
living organisms give rise to the common periods of time derived
from the earth's motions. * [More precisely, 366 1/3 days.]

/4ef
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Aristotle held that time was an inference of motion. But there
appears to be a species of time that is not derived from motion.
This time is associated with the density of matter and manifests
as a zeitgeber that governs local clock rates. Its period is
inversely proportional to the square root of the mass density. A
familiar example is the Schuster Period, a bound on the period of
an earth orbiting satellite when only gravitational and inertial
forces are acting. This period of approximately 84 minutes is
numerically related to the mean density of the earth and to the
universal gravitational constant,G. In general the lower limit to
orbiting periods is given by,

(1) c=on | B
GM

Where R is a size parameter (radius) and M is a mass parameter.
It is seen that equation (1) is a bounding case of Kepler's third
law. For a spherical body, this boundary time, 1, in terms of

the mean density p, is given by,

(2) 1= | 22
\J Go

Equations (1) and (2) are usually applied to astronomical bodies
and since gravity is a force weaker than the other forces by some
40 orders of magnitude, it seems quite inappropriate that these
equations have any significance for bodies where gravity plays no
detectable role, in particular on micro levels, such as for atoms
and particles. However, there is nothing known that precludes
their universal applicability. We therefore make the assumption:

Assumption 1] Equations 1) and 2) may be meaningfully applied to
any entity occupying space and possessing mass.

When applied to objects on the atomic level at first thought it
would seem the results would be insignificant, but we are dealing
with time, not force, and a surprising value emerges. As our
example, we take for size the Bohr radius, a,, and for mass, m,,
the mass of a proton. The time 14, turns out to be almost exactly
2 hours! Specifically,

(3) T =211 ° = 7239, 94sec
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Spatially atomic Phenomena are by size out of sight, but
temporally the 10%° coulomb to gravity ratio brings atomic
gravitational periods squarely into the time frame of daily
experience. This need not be surprising since on the atomic
scale we are accustomed to dealing only with coulomb times which
are of the order of 107'® sec. If the ratio of force strengths
between coulomb and gravitational forces is of the order of 10%°,
then the ratio of gravitational times to coulomb times must be of
the order of 10°° leading to atomic gravitational times of the
order of 10%‘sec., as found in the above example of the hydrogen
atom. Another example is the Schuster time for an electron. Using
r., the electron radius and n.,, the electron mass, the Schuster
period is given by,

(4) T =20 S = 0.121sec

which is about one-eighth of a second, an important time in human
visual perception.rhythms.

Next we note the near coincidence of the hydrogen gravitational
time with a culturally employed time unit derived from the
earth's rotation period. This leads us to suspect that micro
gravitational times may play some hitherto unsuspected roles.

On the basis of the result for atomic hydrogen it seems relevant
to inquire how the Schuster equation could be applied to other
atoms.

The correct value to be used for mass is likely to be the atomic
weight of the atom. But what value should be used for the size
(radius)? The size of an atom can be defined in alternate ways,
but which way is correct for equation (1)? One approach is to
note relations between mass and density. For larger bodies,
planets, stars, etc., there is a rough correlation between the
density of the body and the reciprocal of the mass, which is to
say, p = M'. We provisionally therefore assume:

Assumption 2] For atoms a@d the mass varies inversely with the
density.

This assumption is equivalent to M’ = L’ . Substituting (KGM)? for
L’ in the time equation, we get,

2
(5) T =21 Jf%g?— = 2nK3/2,/GM

That is, the period 1 for ordinary matter is closely
proportional to the square root of the mass.

¥3b
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where A is the atomic weight. Using this result, 1, = tyWA, we

can construct the following table:

ELEMENT ATOMIC WEIGHT VA SCHUSTER PERIOD
HYDROGEN 1.0080 1 2hr Om 40sec = 1/12 day
CARBON 12.0112 3.47 6.98 hr
NITROGEN 14.0067 3.74 7.52 hr
OXYGEN 15.9994 4 8.04 hr

We now introduce a third assumption:

Assumption 3 ] Gravitational periods are to be combined according
where n, and n, are

to the Diophantine rule,
integers.

This assumption leads to the following values for the combined,

mT, = Npiy,

. or beat, periods:
ATOMIC COMBINATIONS PERIODS
241, = 168hr 7 days
16Ty = 120hr 5 days
31, = 24hr 1 day

We note that the elements most abundant in and important to

living organisms give rise to the common periods of time derived

from the earth's motions.

53



ﬁggq'

O

ZEITGEBR.WPW DISK:COSNUMBARS May 16, 1993

THE ZEITGEBERS
TRE FERMION(C CLockr

The general theory of relativity postulates the equivalence
of space-time geometry and the dynamic or mechanical properties
of matter. The equivalence of geometry and dynamics allows
alternate descriptions of the world; the properties of space and
time may be formulated in terms of the properties of energy and
matter and vice versa. An example of this is the equivalence of
mass densities and temporal periods. Wg have dimensionally,

(1) [T?] = [GR_DH

More specifically, if T represents the fundamental tempodal
period associated with a spherical object of radius R and mass M,
then

2 R?

(2) 2 = =
T in? =

where G is the Newtonian gravitational constant. Equation (2) is
recognized as the Schuster period of a gravitating body, i.e. as
the limiting case of Kepler's third law when the orbiting radius
is equal to the object radius. Equation (2) may be rewritten in
the form

(3) T = [3T
Ge

where p is the mass density. It follows that the frequency
associated with a mass is proportional to the square root of the
mass density.

Three specific examples of equation (2) give us the
fundamental periods of three universal clocks. The first of these
is the atom clock based on the proton mass m, and the Bohr radius
a, .

3

(4) 1?2 = ap? 2o
Gm,

_ mmve/lar .
The second is the baryon clock based on the electron radius r,

and the proton mass m,.

I3
(5) T2 = 42 =
G,
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. The third is the lepton clock based on the electron radius r., and
the electron mass m,.
T
(6) t2 = 42 =
Gm

Using the values [1]

1.672623x107% gm

5.291772x107° cm m,
9.109390x10°%® gm

)

ao
2.817941x107"° cm) m,

re

o
mo

The following values for periods and frequencies are obtained:

CLOCK PERIOD FREQUENCY
72 37 .05 weym wry
ATOM T = 7239.94 sec sm, 0.000138 hz
BARYON T = 0.0028134 sec 355.44 hz*
" LEPTON t = 0.120537 sec 8.296 hz

* The frequency 355.44 hz lies between F (349.23) and F* (369.99)
above middle C.

. These values are approximately 2 hours and 40 seconds for the
atom clock, 2.8 milliseconds for the baryon clock, and one eighth
second for the lepton clock.

The ratios of the periods are given by:

T _ 3 £ _ t _ 3
— =a® = =yp, = =a¥
T T H T H

where o is the fine structure constant and u is the ratio of the
proton to the electron mass.
(¢ = 7.297 353 08x107° and p = 1.836 152 701x10°%)[1)]

THE BoSOM/c Clocks

[1] Cohen, E.R. and B.N.Taylor The fundamental physical constants
. Physics Today, August 1992 p9ff
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SOME SCHUSTER PERIOD BASICS

The basic programs

DIOPHEQI .BAS ENTER THE SCHUSTER EXCESS, SECONDS OVER 84 MINUTES
DIOPHEQZ .BAS ENTER M1 AND M2

DIOPHEQ3.BAS ENTER THE DENSITY

DIOPHEQ4 .BAS RANGE OVER VALUES OF DENSITY

DIOPHEQS.BAS RANGE OVER VALUES OF TIME

G =6.5732 x 107°
Density, p = 5.517 £ 0.004 gm/cm® ~ t = 84m + 19.6095 sec
3n = 9.424778

T = V/3n/Gp
DENSITY PERIOD NO%G—PERIOD; DAYS ERROR
5.517 84m+19.609s 222 13 +33.3s
5.513 84m+21.445s 973 57 -14.3s
5.521 84m+17.776s 205 12 +44.1s
5.51733 84m+19.3495 222 13 +0.009s




5059.609521579125

FOR DENSITY = 5.517 THE G-PERIOD IS =
ERROR IN SEC G-PERIODS DAYS
3.31378936767578 222 13
-53.50022888183594 2237 131
-20.18643760681152 2459 144
13.12735366821289 2681 157
46.44114303588867 2903 170
-40.37287521362305 4918 288
-7.059083461761475 5140 301
26.25470733642578 5362 314
59.56849670410156 5584 327

COMPLETE




DENSITY PERIOD No G-PERIOD DAYS ERROR
5.517 84m+19.609s 222 13 +33.3s
5.513 84m+21.445s 973 57 -14.3s
5.521 84m+17.776s 205 12 +44.1s

5.51733 84m+19.3495 222 13 +0.009s
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The existence of a fundamental temporal bound associated with gravitating bodies has long
been recognized in physics and astronomy. This is the minimum period, -T = *2HR 3/2 IVG-M, given
in terms of a body's mass M and radius R with the dimensionality of time. It represents the circular
velocity at the surface of the body and is a minimum period both in the sense that no satellite orbiting
the body can have a smaller orbital period than '*T and the body itself cannot have a period of rotation C’}LM/W
less than *'T and remain stable. In effect the presence of gravitating mass establishes a local clock that ~
"beats time" for all mechanical movement in the neighborhood of the body. *This'minimum period,
also called the "Schuster Period," may be expressed in terms of the mean density p of the body:

rpdbe. o yy il 7im
"NQ"'\‘ e J _ ~iA } 14 H o
*p ;T*S@‘:T /G . f = (G‘FB W gl n
My B my
=
Its value for the earth is about 84 minutes, forthesun 9;/ =4

R .
M g Stebr
g

about 2 3/4 hours, and for the moon 108 minutes.{Assuming a
7 &g o

/ *23 3 ~

mean density of a galaxy of 10 *gm/cm *, the minimum period i \(}%
is of the order of 108 years, about the same as the period e it ¥ | 7
of rotation. et —— AL R
V\(}r Ly r
s T v Z 5 §9gics

The effects of the gravitational clock have been observed on all macroscopic scales from
planets to the visible sample of the universe. Theoretically the gravitational clocks also are operative
on a microscopic scale, but their effects are presumed submerged in the variety of effects resulting
from the action of other forces, such as Coulomb forces. But is this really the case? The strength of
the electric force is 10™40 times greater than that of gravitational force, but this per #8e need not
obscure the gravitational clock, since temporal effects rather than force effects are sought. In spite of
the entirely negligible role of the gravitational force in microscopic structure, it may nonetheless be
possible to detect on a macroscopic scale the gravitational clock of fundamental particles provided the
basic period of the atomic gravitational clock is quite different from the basic period of any atomic
electric clock, and provided that there is phase coherence so that the beat may be augmented by a
factor proportional to the number of atoms.

The atom as an "electric clock” has many basic frequencies that are manifest in optical, X-ray
and other spectra. An example of a basic electric frequency associated with the atom is the period of
orbital revolution of an electron in the first Bohr orbit of a hydrogen atom. This time is 10*- 15.81822




seconds, and is equal to *2nao 1 where *ao is the radius
*OLC *2cR.
of the first Bohr *orbit;u is the fine structure constant; c,

the velocity of light; and R., the Rydberg constant.
*AGW 3

The basic gravitational frequency of the hydrogen atom

will be the minimum frequency

3/2
*T = *2Tra
0
*/Gm-p

where *mp is the mass of the proton.

Using the values in Table I (Cohen and ¥DuMond, *Rev. Modern Physics, v. 37, No. 4, Oct.
1965), we obtain for '*T the values in Table II using *mp or m H the equivalent mass of the hydrogen
atom. These values are based on the unified scale of atomic weights, 12 C =12. (The minimum period

based
16 h *m *s

on the 0= 16 scale of atomic weightsis 1 5943 *.07.)
The gravitational period is seen to be completely
different from electric periods, being 10 19.678 times as
great as t0. This number factor is equal to the square root
of S, the ratio between Coulomb forces and gravitational
forces,

S €2 1039.356
*Gmpme

The elemental binding forces in molecules, crystals, and the microcosmos in general are
electric, dominating gravitational forces by a factor = S. Nonetheless the basic gravitational frequency
may play a role in the organization of

*AGW 4

micro-structures, including living matter, through providing a clock with more convenient periods than
the electric periods, since the basic period of a useful clock must be near to the *rythyms in movement
and process required by organisms.



In order to calculate the values of other basic gravitational frequencies associated with various
atoms, we must determine the proper "gravitational" radius corresponding to the masses of atoms of
atomic weight greater than unity. The "gravitational" radius of these atoms is more likely to be
determined in the same manner as that of large gravitating bodies, rather than being analogous to
coulomb radii. Stable, non-degenerate gravitating bodies appear to possess a maximum potential
bound that is the same for stars, galaxies, clusters of galaxies *(Ref. 2). This potential bound, b, is
about 10*- 4 of the *Schwarzschild potential limit and may be written

/-
=M ~
SM ib i«.—i - Sz / V/,:ug c:ﬂn/f“ ]/z,,;;’f&)xu
c2R c*

We assume that the atoms, being stable, are governed by a similar law, and that the "gravitational"
radius, r, appropriate to any atom is related to the atomic weight, A, by the relation

*GA =k, aconstant.
2

cr

*AGW 5

For the hydrogen atom

2%-*]

*Gm *s k
*p

2

ca
0

Assuming this relation to hold true for all atoms, we have
r=aA
0 *-
*m
*p

and the gravitational period for an atom of atomic weight A

becomes
= *¥)ffr 32 a 3/2 A TA
* UA 0 *-
*GA *Gm m *m




A and m*p being in the same units. In the unified system of
atomic weights, 12 C =12, the proton mass, m 1.00727663.
Hence,

*TA (seconds) =7241.3675 (seconds)

1.00727663

For example, the atomic weight A for carbon is 12.01115. This

*s
gives 86348*.8249 or
A
h *m *s
23 59 8*8.
*AGW 6
h *m *s

For carbon 12, the value is 23 57 48 *. 7. The striking coincidence of these atomic gravitational
periods with the earth's 24 hour period suggests that the carbon atom may be the *zeitgeber governing
the *circadian *rhythym in most living organisms.
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activities, provide time to assist in practice "job inteniews" and other
activities, avail personal resources for students to have "hands-on" work
experiences (et them work on my stuff), and SACRIFICE my hair so the
cosmetology students can have a live model to practice on before taking the
State License test.x/DIV>

<DiV>&nbsp;</DIV>
<DIV>Most endeavors have resulted in great student

success - e.g. - National Wir@ers in student leadership competitions, 98% pl
passing rate in certificate programs (i.e.-cosmetology), etc.</DIV>
<DIV>&nbsp;</DIV> AN

<DIV>0n the down side, personally, there have been a few
electronic devices, truck transmissions, etc. that have not had thg’same high
success rate.</DIV>

<DIV>&nbsp;</DIV>

<DIV>Howewer, based on my personal belief and
convictions for all student success - | want yoy to tzl;% look at the

attachment (jpeg) with its 9 separate photos and maKe a guess as to what my "New
Summer Do" isl</DIV>
<DIV>&nbsp;</DIV>
<DIV>Hugs to all,</DIV>
<DIV>Charlie</DIV>
<DIV>&nbsp;</DIV>
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Is the source of time built into all organisms, or are we really
being driven by the earth clock outside us?
--Avini, Empires of Time p29

{[If CHON is the zeitgeber, can we then detect physical changes at
the atomic and molecular levels having CHON periodicities? Any
changes would have to be detected in individual atoms or molecules,
because in aggregates it is highly improbable that the phases of
the cycles would be the same. The statistical aggregation of random
phases would wash out detectability of the cycles. For
periodicities to be manifested in aggregates the atoms and
molecules would have to be coherent, i.e. their individual periods
would have to be in phase. However, there do exist molecular
aggregates which manifest periodicities. We call these aggregates
living organisms. We are led to the surmise, consistent with what
we know about biological clocks, that the zeitgeber lies within
every atom of the organism. We may further speculate that coherence
of atomic zeitgebers is a property of - living systems. When the
coherence diminishes, ageing takes place and when it reaches a
certain level of randomness, death occurs.

In 1living systems the zeitgeberg are in phase, they exhibit

coherence. In inanimate systems the zeitgebers are random.

The fountain of youth is the resynchronization of the zeitgebers.]}
Violatimg the 2° [ qw of TAvrmodysncn 125
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1993 #34

THE ZEITGEBERS

The general theory of relativity postulates the equivalence
of space-time geometry and the dynamic or mechanical properties
of matter. The equivalence of geometry and dynamics allows
alternate descriptions of the world; the properties of space and
time may be formulated in terms of the properties of energy and
matter and vice versa. An example of this is the equivalence of
mass densities and temporal periods. Ww have dimensionally,

(1) [T?] = [%34]

More specifically, if T represents the fundamental temporal
period associated with a spherical object of radius R and mass M,
then
3
(2) T2 = ap? 2
GM

where G is the Newtonian gravitational constant. Equation (2) is
recognized as the Schuster period of a gravitating body, i.e. as
the limiting case of Kepler's third law when the orbiting radius
is equal to the object radius. Equation (2) may be rewritten in
the form

3 = /__3’“
(3) T %

where @ is the mass density. It follows that the frequency
associated with a mass is proportional to the square root of the
mass density.

Three specific examples of equation (2) give us the
fundamental periods of three universal clocks. The first of these
is the atom clock based on the proton mass m, and the Bohr radius
a

o *
3

(4) 12 = a2 oo
Gm,,

The second is the baryon clock based on the electron radius r,
and the proton mass m,.

3

(5) T2 = 472 —°

Gmy,
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The third is the lepton clock based on the electron radius r, and
the electron mass m,.

(6) t2 = 42 ——

Using the values [1]

5.291772x107° cm, m, 1.672623x107%* gm

ao
2.817941x10* cm, m, = 9.109390x107%® gm

r.

I
not

The following values for periods and frequencies are obtained:

CLOCK PERIOD FREQUENCY
ATOM T = 7239.94 sec 0.000138 hz
BARYON T = 0.0028134 sec 355.44 hz*
LEPTON t = 0.120537 sec 8.296 hz

* The frequency 355.44 hz lies between F (349.23) and F* (369.99) above middle C.
These values are approximately 2 hours and 40 seconds for the
atom clock, 2.8 milliseconds for the baryon clock, and one eighth
second for the lepton clock.

The ratios of the periods are given by:

T t
=, Z=VE <=V

where o is the fine structure constant and p is the ratio of the
proton to the electron mass.
(¢ = 7.297 353 08x107° and pu = 1.836 152 701x10°)([1]

[1] Cohen, E.R. and B.N.Taylor The fundamental physical constants

Physics Today, August 1992 p9ff
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ON CHON

AND THE BOUNDARIES OF TIME

Aristotle held that time was an inference of motion. But there
appears to be a species of time that is not derived from motion.
This time is associated with density and manifests itself as a
bound to allowable periods and frequencies. A familiar example is
the Schuster Period, a bound on the period of an earth orbiting
satellite when only gravitational and inertial forces are acting.
This period of approximately 84 minutes is numerically related to
the mean density of the earth and to the universal gravitational
constant,G. In general the lower limit to orbiting periods is
given by,

(1) =21 | —

Where R is a size parameter (radius) and M is a mass parameter.
For a spherical body, this boundary time, 1, in terms of the
mean density p, is given by,

(2) T=W—§E
GpP

These equations govern gravitationally based temporal boundaries
and are usually applied to astronomical bodies. Since gravity is
a force weaker than the other forces by some 40 orders of
magnitude, it seems quite inappropriate that these boundaries
have any meaning for bodies where gravity plays an insignificant
role, in particular on meso and micro levels. However, there is
nothing known that precludes their universal applicability. We
therefore make the assumption:

Assumption 1] Equations 1) and 2) may be applied to any entity
occupying space and possessing a definite mass.

When applied to objects on the atomic level at first thought it
would seem the results would be insignificant, but we are dealing
with time, not force, and some surprising values emerge.

Taking for size the Bohr radius, a,, and for mass, m,, the mass
of a proton, the time 1,4, turns out to be almost exactly 2 hours!

(3) T =21 ° = 7239.94sec
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While spatially atomic phenomena are by size out of sight,
temporally the 10*° coulomb to gravity ratio brings atomic
gravitational periods into the time frame of daily experience.
This need not be surprising since on the atomic scale we are
accustomed to dealing only with coulomb times which are of the
order of 10™'® sec. If the ratio of force strengths between
coulomb and gravitational forces is of the order of 10°°, then
the ratio of gravitational times to coulomb times must be of the
order of 10°° leading to atomic gravitational times of the order
of 10'sec., as found in the above example of the hydrogen atom.

The near coincidence of this hydrogen gravitational time with a
culturally employed unit derived from the earth's rotation period
leads us to suspect that micro gravitational times may play some
hitherto unsuspected roles. Another example is the Schuster time
for an electron, using r.,, the electron radius and m_,, the
electron mass, is given by,

(4) T =21 s = 0.121lsec

about one-eighth of a second, an important time in human visual
perception. These gravitational times may supply the zeitgeber
needed for various organic clocks and rhythms.

On the basis of the result for atomic hydrogen it seems relevant
to inquire how the Schuster equations could be applied to other
atoms. One approach to this question is based on gravitational
bounds, of which there are two: The first bound is the so-called
Schwarzschild Limit. This is a relativistic bound that limits the
gravitational potential of all matter (except that in black
holes). It applies to nuclear matter and macro objects such as
neutron stars. It is given by,

GM

< k
c?R

(5)

where k is a constant of the order of unity. The second bound
governs all "ordinary" matter, that is matter composed of atoms
and molecules. This potential limit is given by,

GM

c?R

(6)

where o is the fine structure constant. We here introduce a
second assumption:

Assumption 2] For all atomic and molecular matter the
gravitational radius is proportional to the metric radius.
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. This assumption, a statement that all matter in ordinary state
lies along the o ?otential bound, says that the gravitational
radius, GM/c’ = ka‘R, or that R = KGM, where K is a constant.
Substituting KGM for R in equation 1) gives,

(KGM) 3
GM

(7) T = 21 = 2nKk¥2eM

That is, the period 1t for ordinary matter is closely
proportional to the mass, and since 1y = 2nK”’Gm,,

T _ 2nK¥?6M M _
(8) —_ = = — =2

3/2
Ty 211K Gm, m,

where A is the atomic weight. Using this result, 1, = A1y, we can
construct the following table:

ELEMENT ATOMIC WEIGHT SCHUSTER PERTIOD
HYDROGEN 1.0080 2hr Om 40sec = 1/12 day
CARBON 12.0112 24hr 9m 20sec = 1 day
. NITROGEN 14.0067 28hr 10m 7sec = 7/6 day
OXYGEN 15.9994 32hr 10m 33sec = 4/3 day
POTASSIUM 39.102 78hr 38m lésec = 13/4 day

We now introduce a third assumption:

Assumption 3 ] Gravitational periods are to be combined according
to the Diophantine rule, n;T; = n,t,, where n; and n, are
integers.

This assumption leads to the following values for the combined,
or beat, periods:

ATOMIC COMBINATIONS PERIODS
11, = 1271y Teg = 1 day
TTey = 6Ty Tew = 7 days

4Tepn = 710

Tcuon = 28 days

13Tepon = 1127

Tchonk = 364 days *

We note that the elements most abundant in and important to
living organisms give rise to the common periods of time derived

from the earth's motions.

* [More precisely, 366 1/3 days.]
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CHON REVISITED

Aristotle held that time was an inference of motion. But there
appears to be a species of time that is not derived from motion.
This time is associated with the density of matter and manifests
as a zeitgeber that governs local clock rates. Its period is
inversely proportional to the square root of the mass density. A
familiar example is the Schuster Period, a bound on the period of
an earth orbiting satellite when only gravitational and inertial
forces are acting. This period of approximately 84 minutes is
numerically related to the mean density of the earth and to the
universal gravitational constant,G. In general the lower limit to
orbiting periods is given by,

(1) =211 _R_..
GM

Where R is a size parameter (radius) and M is a mass parameter.
It is seen that equation (1) is a bounding case of Kepler's third
law. For a spherical body, this boundary time, 1, in terms of

the mean density p, is given by,

(2) T=4-§E
GpP

Equations (1) and (2) are usually applied to astronomical bodies
and since gravity is a force weaker than the other forces by some
40 orders of magnitude, it seems quite inappropriate that these
equations have any significance for bodies where gravity plays no
detectable role, in particular on micro levels, such as for atoms
and particles. However, there is nothing known that precludes
their universal applicability. We therefore make the assumption:

Assumption 1] Equations 1) and 2) may be meaningfully applied to
any entity occupying space and possessing mass.

When applied to objects on the atomic level at first thought it
would seem the results would be insignificant, but we are dealing
with time, not force, and a surprising value emerges. As our
example, we take for size the Bohr radius, a,, and for mass, m,,
the mass of a proton. The time T1,, turns out to be almost exactly
2 hours! Specifically,

a
(3) 1,20 ° = 7239.9%4sec
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Spatially atomic ?henomena are by size out of sight, but
temporally the 10°° coulomb to gravity ratio brings atomic
gravitational periods squarely into the time frame of daily
experience. This need not be surprising since on the atomic
scale we are accustomed to dealing only with coulomb times which
are of the order of 107'° sec. If the ratio of force strengths
between coulomb and gravitational forces is of the order of 10%°,
then the ratio of gravitational times to coulomb times must be of
the order of 10?° leading to atomic gravitational times of the
order of 10°sec., as found in the above example of the hydrogen
atom. Another example is the Schuster time for an electron. Using
r., the electron radius and m,, the electron mass, the Schuster
period is given by,

3

r
(4) T =211 e = 0.121sec
e Gm,

which is about one-eighth of a second, an important time in human
visual perception.rhythms.

Next we note the near coincidence of the hydrogen gravitational
time with a culturally employed time unit derived from the
earth's rotation period. This leads us to suspect that micro
gravitational times may play some hitherto unsuspected roles.

On the basis of the result for atomic hydrogen it seems relevant
to inquire how the Schuster equation could be applied to other
atons.

The correct value to be used for mass is likely to be the atomic
weight of the atom. But what value should be used for the size
(radius)? The size of an atom can be defined in alternate ways,
but which way is correct for equation (1)? One approach is to
note relations between mass and density. For larger bodies,
planets, stars, etc., there is a rough correlation between the
density of the body and the reciprocal of the mass, which is to
say, p = M'. We provisionally therefore assume:

Assumption 2] For atoms éﬁé\the mass varies inversely with the
density. /

This assumption is equivalent to M’ = L’ . Substituting (KGM)? for
L’ in the time equation, we get,

2
(5) T =21 JéggL-= 2nK3/2,/6M

That is, the period 1 for ordinary matter is closely
proportional to the square root of the mass.
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2nK>%/GM _ M _ /A
2nK3”JGmp vﬁg

where A is the atomic weight. Using this result, 1, = T/A, we
can construct the following table:

ELEMENT ATOMIC WEIGHT vA SCHUSTER PERIOD
HYDROGEN 1.0080 1 2hr Om 40sec = 1/12 day
CARBON 12.0112 3.47 6.98 hr
NITROGEN 14.0067 3.74 7.52 hr
OXYGEN 15.9994 4 8.04 hr

We now introduce a third assumption:

Assumption 3 ] Gravitational periods are to be combined according
to the Diophantine rule,

integers.

n,;T; = n,T,, where n; and n, are

This assumption leads to the following values for the combined,
or beat, periods:

ATOMIC COMBINATIONS PERIODS
241, = 168hr 7 days
16ty = 120hr 5 days
31, = 24hr 1 day

We note that the elements most abundant in and important to
living organisms give rise to the common periods of time derived
from the earth's motions.
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EXPLORING CHON

Aristotle held that time was an inference of motion. But there
appears to be a species of time that is not derived from motion.
This time is associated with the density of matter and manifests
as a zeitgeber that governs local clock rates. Its period is
inversely proportional to the square root of the mass density. A
familiar example is the Schuster Period, a bound on the period of
an earth orbiting satellite when only gravitational and inertial
forces are acting. This period of approximately 84 minutes is
numerically related to the mean density of the earth and to the
universal gravitational constant,G. In general the lower limit to
orbiting periods is given by,

(1) r=2m | 2o
GM

Where R is a size parameter (radius) and M is a mass parameter.
It is seen that equation (1) is a bounding case of Kepler's third
law. For a spherical body, this boundary time, 1, in terms of

the mean density p, is given by,

(2) | T= §E
J Gp

Equations (1) and (2) are usually applied to astronomical bodies
and since gravity is a force weaker than other forces by some 40
orders of magnitude, it seems quite inappropriate that these
equations contain anything of significance for bodies where
gravity plays no detectable role, in particular for micro objects
such as atoms and sub-atomic particles. There is, however,
nothing known that precludes the universal applicability of these
equations. At first thought, when applied to objects on the
atomic level, it would seem the results would be insignificantly
small. Remembering, though, that we are dealing with time, not
size or force, this is not the case. Coulomb times are of the
order of 107'° seconds. If the ratio of force strengths between
coulomb and gravitatonal forces is of the order of 10 then the
ratio of gravitational times to coulomb times must be of the
order of 10°° leading to atomic graviational times of the order
of 10° seconds.

As an example, take for size the Bohr radius, a,, and for mass
the proton mass, m,. The time T4, turns out to be almost exactly
2 hours! Explicitly,
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3

a
(3) T,=20 G° = 7239.94sec = 2hours 40seconds
m
P

Another example is the Schuster time for an electron. Using r,
the electron radius and m,, the electron mass, the Schuster
period is given by,

(4) T, = 0.121sec

which is about one-eighth of a second, again in the time frame of
daily experience as this is an important time interval for human
visual perceptions. T hboyt the valve we subeh from bime o Fesguame |
A third value of possible physiological interest is the time
given by the Schuster period of the proton:

r3

(5) T =2m ¢ = 2.813 millisec
PTG,

The time values given in equations 3), 4), and 5), since they are
present in every atom or organic molecule, may play the role of
zeitgebers in physiological processes.

Noting the near coincidence of the hydrogen gravitational time of
two hours with twice the culturally employed time unit derived
from the earth's rotation period, we are led to surmise that
micro gravitational times may play some hitherto unsuspected
role. On the basis of the result for atomic hydrogen it seens
relevant to go further and inquire how equation(1) might be
applied to other atoms.

The correct value to be used for mass in equation(l) is likely to
be a function of the atomic weight of the atom. But the value to
be used for the size (radius) in equation(l) is uncertain as we
are dealing with gravitational rather than coulomb effects.

One approach is to note that the relation between density and

mass for some larger bodies, planets, stars, etc., is that the
density is roughly proportionallto the reciprocal of the mass,
p o« M-,

Alternate Assumption 1] We provisionally assume the same for
atoms, that the density varies inversely with the mass. This is
equivalent to M’ « R® . Substituting (KGM)? for R® in
equation(l), we get, :
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(6) T = 2m; -i§g§L-= 21K %/2,/GM

That is, the period 1 is approximately proportional to the
square root of the mass. This leads to,

3/2 [
where A is the atomic weight.

Using this result, 1, = t1,/A, we can construct the following
table:

ELEMENT ATOMIC WEIGHT VA SCHUSTER PERIOD
HYDROGEN 1.0080 1 2hr Om 40sec = 1/12 day
CARBON 12.0112 3.47 6.98 hr
NITROGEN 14.0067 3.74 7.52 hr
OXYGEN 15.9994 4 8.04 hr

The values in the table are within less than half of a percent of
7 hours for carbon, 7.5 hours for nitrogen, and 8 hours for
oxygen. These periods are closely commensurate with the rotation
period of the earth as given in the second table.

ATOMIC COMBINATIONS PERIODS
24t. = 168hr 7 days
16ty = 120hr 5 days
31,= 24hr 1 day

It should be noted that the elements most abundant in and
important to living organisms give rise to periods nearly
commensurate with the earth's rotaton. Are the periods of these
atoms in animal and human cells the zeitgebers for circadian
rhythms?

A second possible approach to the question of the proper radius
to employ for gravitational times is to assume that all atoms in
ordinary state have the same gravitational potential. This
assumption is equivalent to: size is proportional to mass.
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Alternate Assumption 2] Assume for atoms in organic molecules
that size is proportional to mass, R = KGM. Substituting KGM for
R in equation 1) gives,

(KeM) 3
GM

(8) T = 21 = 2nK¥26M

That is, the period 1 for ordinary matter is closely
proportional to the mass, and since 1y = 2nK’Gm,,

T _ 2nK¥eM M
(9) — == — =4

3/2
Ty  2mk¥?em, m,

where A is the atomic weight. Using this result, 1, = A1y, wWe can
construct the following table:

ELEMENT ATOMIC WEIGHT SCHUSTER PERIOD
HYDROGEN 1.0080 2hr Om 40sec = 1/12 day
CARBON 12.0112 24hr 9m 20sec = 1 day
NITROGEN 14.0067 28hr 10m 7sec = 7/6 day
OXYGEN 15.9994 32hr 10m 33sec = 4/3 day
POTASSIUM 39.102 78hr 38m l16sec = 13/4 day

Again the values in the table are (with the exception of
potassium) close approximations to periods commensurate to common
astronomical periods. Resulting values in days are given in the
following table.

ATOMIC COMBINATIONS PERIODS
11, = 1271y Ty = 1 day
TTey = 6Ty Ty = 7 days
ATceyn = 710 Tcyon = 28 days
13Tepon = 1127k Teuonk = 364 days *

Again we note that the elements most abundant in and important to
living organisms give rise to the common periods of time derived
from the earth's motions. ' *[More precisely, 366 1/3 days.]
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ATOMIC, BIOLOGICAL AND COSMIC CLOCKS
INTRODUCTION

The definition and measurement of time ultimately depend on reduction to
some cyclical phenomenon. Units of time are definable only in terms of a periodic
motion such as the earth’s rotation or annual motion, or in terms of electomagnetic
vibrations. All clocks require for their operation and calibration a basic pulse such as
provided by a pendulum, a piezzo elcetric crystal, a multivibrator, or some sort of
molecular vibrations. Although both in physics and psychology we have the concept
of a “linear flow of time” and usually represent time as a uniformly increasing variable
operationally time must be derived from some sort of periodicity.

‘ Since the advent of the jet age we have become increasingly aware of the im-
portance of biological clocks that regulate many of the physiological processes that

take place in living organisms. Extensive experimental work on plants and animals shows
that the clock that exists in all bio-organisms governs the life rhythms of the organism
and its sub-components. It is reasonable to surmise that these biological clocks, like
other clocks, must contain as oscillator that supplies energy or information having
periodic components. A name frequently given to this oscillator is zejtgeber or time
giver. The puls@§ provided by the zeitgeber can be sensed by the organism and used
either to calibrate or to control directly other physiological processes.

The zeitgeber has two important properties: first, it apperas to be universally
accessible to all living organisms even down to individual cells. Second, it supplies
periodic pulses whose fundamental frequencies or harmonics approximate basic bio-
rhythms such as 24 hours or 28 days. The macroscopic properties of biological clocks
do not unequivocally suggest whether the zeitgeber is endogenous or exogenous, i.e.
whether the basic oscillator is contained in the organism and is independent of the
environment or is entrained and enforced by environmental cycles. Most of the ex-
perimental results, however, can be accounted for by an endogenous clock that pos-
sesses periods equal to the principal geophysical and astronomical cycles to which life
is tuned.

In this paper a zeitgeber satisfying these two prescriptions is proposed. It is
an endogenous physical oscillator present in all matter and possessing periods corres-
ponding to environmental cycles. Although neither the exact nature of this zeitgeber’s
pulse nor how a bio-organism senses or makes use of the pulse can be given at present,
the requirements and implications of the herein proposed zeitgeber hypothesis are
deveroped.

ATOMIC GRAVITATIONAL CLOCKS

Since the most exacting requirement to be placed on any zeitgeber hypothesis
is the ability to reproduce accurately the quantitative values of the periods observed
in bio-rhythms, success in this aspect should be taken as the first test for any model.
Accordingly, the rationale adopted in this paper has been first to find an hypothesis

T il 8B
7 /0 8
FIoM

7, 10/72.
S0 S/ Cas



ROUGH DRAFT
A. G. Wilson
7/26/68

ATOMIC, BIOLOGICAL AND COSMIC CLOCKS

INTRODUCTION

The definition and measurement of time ultimately depend
on reduction to some cyclical phenomenon. Units of time are
definable only in terms of a periodic motion such as the earth'sl
rotation or annual motion, or in terms of electromagnetic
vibrations. All clocks require for their operation and
calibration a basic pulse such as provided by a pendulum, a
piezzo electric crystal, a multivibrator, or molecular
vibrations. Although both in physics and psychology we have
the concept of a "linear flow of time" and usually represent time
as a uniformly increasing variable, operationally time must be
derived from some periodicity.

Since the advent of the jet age we have become increasingly

aware of the importance of biological clocks that regulate many

of the physiological‘procésses that take place in living organisﬁs.
Extensive experimental work on plants and animals shows that the
clock that exists in all bio-organisms governs the life rythyms of
the organism and its components. It is reasonable to surmise that
these biological clocks, like other clocks, must contain an
oscillator that supplies energy or information having periodic
components. A name frequently given to this oscillator is the
zeitgeber or "time-givef." The pulses provided by the zeitgeber
can be sensed by the organism'and used either to calibraté 6r to -

control physiological processes.
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The zeitgeber has two important properties: first, it
appea?s to be universally accessible to all living organisms
even down to being available to cells. Second, it supplies
periodic pulses whose fundamentals or harmonics approximate
some basic biological rythym such as 24 hours or 28 days.
The macroscopic properties of biological clocks do not
unequivoqally suggest whether the zeitgeber is endogenous
or exogenous, .i.e., whether the basic oscillator is contained
and is‘independent of the environment or is trained and forced
by environmental cycles. Most of the experimental results,
however; can be accounted for by an endogenous clock that
possesses periods equal to the principal geophysical and
éstronomical cycles to which life is tuned.

In this paper a zeitgeber satisfying these two
prescriptions is proposed. It is an endogenous physical’
oscillator present in all matter and possessing periods
cbrrésponding to environmental cycles. Although neither the
exact nature of this zeitgeber's‘pulse nor how a bio-organism senses
or makes use of the pulse can be given at present, the requirements
and implications of the here proposed zeitgeber hypothesis are

developed.

ATOMIC GRAVITATIONAL CLOCKS

Since the most unequivocal requirement to be placed on any
zeitgeber hypothesis is the ability to reproduce accurately the

quantitative values of the periods of observed bio-rythyms, success
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in this should be taken as the first test for any model.
Accordingly the rationale adopted in this paper has been first
to find an hypothesis that satisfies the two ovefriding
requirements of bio-clocks, their ubiquity in living matter
and the generation of the prescribed periods. The quantitative
success of a model of the zeitgeber would then justify a more
detailed elaboration of the model.

The existence of a fundamental temporal bound associated
with gravitating bodies has long been recognized in physics

and astronomy. This bound is thé minimum period,
3/2
(1) ¥ = 24832/ cm,

~given in terms of a body's mass M and radius R with G being the
ﬁewtonian_gravitational constant. It corresponds to the
ciruclar velocity at the surface of the body and is a minimum
period both in the sense that no satellite orbiting the body
can have a smaller orbital period than ¥ and the body itself

 cannot have a period of rotation less than ¥ and remain

- gravitationally stable. The period ¥ determines a basic
"frequency" that.governs dynamical behavior in the neighborhood
of the gravitating body. For example, Kepler's Third Law in
terms of T is simply: (orbital period) = (¥/R3/2)° (orbital
semi-major axis)3/2, In the above sense it may be said that the
presence of a.graQitating mass establishes a loéal clock that

"beats time" for dynamical motions in the neighbofhood of the body.
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The minimum period,% , also called the "Schuster Period,"
may be expressed in terms of the mean density p of the body by,
E%z = 37/G. Some approximate values of X are: for the earth
84 minutes, for the moon 108 minutes, and for the sun 2 3/4 hours;

23.gm/cm3, the

assuming a mean density of the milky way of 10
~galactic minimum period is of the order of 108 years or about
the same as its period of rotation.

The effects of this gravitational clock have been observed
in the cosmic and of the time scale from planets to the largest
known aggregates of matter in the universe. Are gravitational
.clocks also operative on a microscopic scale? Theoretically,
the gravitational clock should be universal, associated with all

.- matter, whatever its mass. The Schwarzschild solution to the

| field equations of general relativity establishes for all,
masses having spherical symmetry the relation[RSRcz/R3) equal
to a.constant that depends on the density distribution; where
R is the Schwarzschild radius, 2GM/c?, and R, is ﬁhé radius

of curvéture of space-time at £he coordinate distance R from
the center of the body (R > the physical radius). . Substituting
the value of Rs‘gives, (Rc/c)2 o R?/ZGM.

It is thus seen-that a local time periqd is defined by
the ratio of the local curvature of space to the velocity of
propagation of light. This period is inversely proportional to
the square root of the mean density of matter within the
coordinate distance R. Hence a_gravitational period -- equal to

Y if the constant of proportionality is 872 -- should exist in
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the neighborhood of all masses regardless of the spatial scale
of the mass aggregate involved. However, microcosmic gravitational
effects are presumed submerged in the variety of effects resulting
from the action of other dominating forces such as Coulomb forces.
The éleméntal binding forces in mblécules, crystals, and‘in thé
microcosmos in general, are electric. Although structural
patterns are determined by these Coulomb forces, which are stronger
than_gravitational forces by a factor S = ez/Gmpme = 1039‘356
(e is the chérge on the electron, G the gravitational constant,.
mp the mass of the proton and me the mass of the electron), this
need not per se obscure manifestation of the effects of micro-
cosmic gravitational clocks whose temporal effects rather than
force effects afe soﬁght. In spite of the negligible role played
by gravitational force in microscopic structures, it may somehow
be possible that the temporal effects of the gravitational
clocks of-fundamental masses are detectable on a macroscopic
scale. Two conditions favorable to this would be for the
gravitational periods of atoms to be completely different from.
their electric periods, and for there to be sufficient phase
coherence that periodic atomic gravitational effects will not be
lost in summation over random phases.

. The atom as an "electric clock" has many frequencies that
are manifest in optical, X-ray and other spectra. An example of

" a basic electric frequency associated with the atom is that

corresponding to the period of orbital revolution of an electron

in the first Bohr orbit of a hydrogen atom. This time interval
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is 10_15‘81822 seconds, and is equal to'zﬂao =1 where a_ is
o
oC 2CRe
the radius of the first Bohr orbit; is the fine structure

constant; ¢ the velocity of light; and Re, the Rydberg constant.
The basic gravitational frequency of the hydrogen atom

will be the frequency corresponding to the minimum period,

v _ 3/2,,
T = 21Tao /mep.

Using the values in Table I (Cohen and DuMbnd, Rev. Modern
Physics, v. 37, No. 4, Oct. 1965), we obtain for ¥ the first
value in Table II. The mass values are based on the unified
scale of atomic weights, 12C = 12,

It is somewhat surprising that the combination of

fundamental constants whose c.g.s. values range from 10_23 to

1078

define in exactly the manner of cosmic gravitational
relationships a basic time period of almost precisely two hours.
This fundamental gravitational period of the hydrogen atom,

19.678 _ YS timeé'as.great

which we may designate by Tyt is 10
as the basic Coulomb period of the hydrogen atom. The value of
iH is not located on the micro or cosmic ends of the temporal
scale but falls in the very range of time periods that are
characteristic of lifé processes. The existence of a ubiguitous
oscillator - the hydrogen atom - having a temporal pefiod
commensurate with astronomical and biological periods suggests

that the hydrogen atom might be playing some part in the

zeitgeber of biological clocks.
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In addition to the gravitational period, associated

Tys
with the neutral unexcited hydrogen atom, by means of Egq. (1),
two other basic gravitational periods may also be calculated.
One of these that has an order of magnitude suitable for
temporai regulation of many shorter physiélogical processes is
the "electron period" (Te) based on m and ré, the mass and
radius of the electron. The existence of a clock with 'a pulse
period of about one-tenth of a second (Table II, second value)
would be appropriate for calibrating processes such as heart

beat, optic scanning, etc. For completeness, a third

gravitational period, the "nuclear period" (Tn), is taken to

a’ty (Table II, third value).




A, G. Wilson, 6/11/68

III.  GRAVITATIONAL CLOCKS

The Schwarzschild solution to the field equations of
~general relativity establishes for all physical bodies the

relation
2,3
(1) Rs Rc /R = constant

between R_, the Schwarzschild radius of the body, R, the local
radius of curvature of space, and R physical radius (Ref. 1).
This expression implies the existence of a fundamental time
period associated with every physical body. Substituting
2GM/c2 for Rs_gives,
2eM R % = kR,

c
This local basic time period t is thus proportional to the
ratio of the local radius of curvature of space to the velocity
of light, or

12 = kR3 .

2GM
If the constant k is taken to be 8n2, the basic period =t
becomes equal to the minimum gravitational period ,¥, associated

with gravitating bodies. This period,
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(2) == 2 g3/? -

YGM

sometimes called the "Schuster Period" is the well known limiting

minimum period for bodies orbiting about a spherical mass M of
radius R. Eqg. (1) also is the limiting rotation period for a
gravitating body with dynamic stability.

Although for small distances the effects of gravitational
forces are negligible with respect to other forces (Coulomb
forces, for example, are 1040 times greater than gravitational
forces), there is no reason to doubt the universal validity of
Eg. (1) and its inference for the existence of a fundamental
characteristic time associated with the local curvature of
space. The effects of this "gravitational clock" are well
known in the mécrocosmos,‘governing dynamical motions of, cosmic

bodies. 1Is it possible to detect the effects of the gravita-

“tional clock associated with the small fundamental masses, the
' atoms or elementary particles? Certainly it is not possible to

‘detect the gravitational force effects associated with entities

whose structure is overwhelmingly determined by other forces,
but it still may be possible to detect the temporal effects of
the gravitational cléck especially if the basicvgraVitation
periods are markedly different from electric and other periods

associated with the atom.
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ITI GRAVITATIONAL CLOCKS

The existence of a fundamental temporél.bound associated
with gravitating bodies has long been recogniéed in physics
and astronomy. This is the minimum period, ¥ = 2nR3/2//§ﬁ}
giveﬁ in terms of a body's mass M and radius R with the
dimensionality of time. It represents the circular.velocity
at the surface of the body and is a minimum period both in
the sense that no satellite orbiting the body can have a
smaller orbital period than T and the body itself cannot have
a period of rotation less than Y and remain stable. 1In
effeEt the presence of gravitating mass establishes a local
clock that "beats time" for all mechanical movement in the
neighborhood of the body. This minimum period, also called

the "Schuster Period," may be expressed in terms of the mean

density p of the body:
;TZ = 31/G.

. Its value for the earth is about 84 minutes, for the sun

about 2 3/4 hours, and for the moon 108 minutes. Assuming a

23

mean density of a galaxy of 10” gm/cm3, the minimum period

8

is of the order of 10~ years, about the same as the period

of rotation.
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The effects of the gravitational clock have been observed
on all macroscopic scales from planets to the visible sample
of the universe. Theoretically the gravitational clocks also
are operative on a microscopic scale, but their effects are
presumed submerged in the variety of effects resulting from
the action of other forces, such as Coulomb forces. But is
this really the case? The strength of the electric force is

lo40

times greater than that of gravitational force, but this
per se need not obscure the gravitational clock, since
temporal effects rather than force effects are sought. 1In
spite of the entirely negligible role of the gravitational
force in microscopic structure, it may nonetheless be possible
to detect on a macroscopic scale the gravitational clock of
fundamental particles provided the basic period of the atomic
~gravitational clock is quite different from the basic period
of any atomic electric clock, and provided that there is

phase coherence so that the beat may be augmented by a factor

proportional to the number of atoms.

The atom as an "electric clock" has many basic frequencies

that are manifest in optical, X-ray and other spectra. An
example of a basic electric frequency associated with the atom
is the period of orbital revolution of an electron in the

first Bohr orbit of a hydrogen atom. This time is 10-15-81822

seconds, and is equal to 27ao = 1 where ao is the radius
' aC 2CRw
of the first Bohr orbit;o is the fine structure constant; c,

the veldcity of light; and R., the Rydberg constant.
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. The ba'si‘c> gravitational frequency of the hydrogen atom

will be the minimum frequency

where mp'is the mass of the proton.
Using the values in Table I (Cohen and DuMond, Rev.
Modern Physics, v. 37, No. 4, Oct. 1965), we obtain for ¥

the values in Table II using mp or my

the hydrogen atom. These values are based on the unified

scale of atomic weights, 12¢

the equivalent mass of

12, (The minimum period based

16 h

on the 70 = 16 scale of atomic weights is 1 m

59™ 435 .07.)

. - The gravitational period is seen to be completely

different from electric periods, being 1019‘678

times as
~great as to. This number factor is equal to the square root
‘offS, the ratio between Coulomb forces and gravitational
forces, |

s = o2 = 1039-356

Gmpme

The elemental binding forces in molecules, crystals,
and the microcosmos in genefal are electric, dominating
gravitational forces by a factor = S. Nonetheless the basic

gravitational frequency may play.a role in the organization of
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microjgtrquu;es, inF}uding liv;nghmatter,,Fhroughmproviding
'aig;ock_with mqre conv¢nient periods fhan the electric
periods, since the basic period of a useful clock must be
near to the rythyms in movement and process required by
organisms,

In order to calculate the values of other basic
gravitational frequencies associated with various atoms, we
must determine the proper "gravitational" radius corresponding
to the masses of atoms of atomic weight greater than unity.
The ?gravitational" radius of these atoms is more likely to be
determined in the same manner as that of large gravitating
bodies, rather than being analogous to cou}omb radii: Stable,
non-degenerate gravitating bodies appear to possess a maximum

potential bound that is the same for stars, galaxies, clusters
of galaxies (Ref. 2). This potential bound, b, is about 10”4

of the Schwarzschild potential limit and may be written

We assume that the atoms, being stable, are governed by a
similar law, and that the "gravitational" radius, r, appro-
priate to any atom is related to the atomic weight, A, by the

relation

GA = k, a constant.
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For the hydrogen atom
Gm = 0?57t = k.
2

c a
O

Assuming this relation to hold true for all atoms, we have

and the gravitational period for an atom of atomic weight A

becomes
- 3/2 _ 3/2 _
A = 27r = 2ra A = To A
GA Gm m m
‘ P P o]

A and mp being in the same units. 1In the unified system of

atomic weights, l?C

12, the proton mass, m = 1.00727663.

Hence,

tA(seconds) = 7241.3675 4. (seconds)
1.00727663

For example, the atomic weight A for carbon is 12.01115. This

gives T, = 863485.8249 or
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h m

For carbon 12, the value is 237 57 48%.7. The striking

coincidence of these atomic gravitational periods with the

earth's 24 hour pe;ibd suggests that the carbon atom may be
the zeitgeber governing the circadian rhythym in most living

organisms.
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ATOMIC, BIOLOGICAL AND COSMIC CLOCKS

I. BIOLOGICAL CLOCKS

A brief but fair summary statement of the essence of
the experimental conclusions of work on biological rythyms and
cyclical phenomena in living matter is that there exists a
"Zeitgeker“.that provides the pulse beat by which living
organisms structure their temporal processes. Further, this
Zeitgeker should 1) be universally available to every organism
and its sub-components ddwn to the level of the single cell;
2) possess certain intrinsic periods either as its fundamental
or a harmonic - the principal biological periods being (a)
the Circadian or 24 hour period, (b) the menstrgal or 28 day
period, and (c) a short period of the order of 1/15 second
exhibited by many physiological processes.

The foregoing properties of the Zeitgeker do not permit
a decision whether the clock is endogenous Or exogenous.
However, most of the experimental results could be accounted
for by an endogenous clock possessing exogenous periods, i.e.,
periods corresponding to the principal geophysical and
astronomical cycles to which life seems tuned.

In this paper a clock meeting these prescriptions is -
suggested. It is an endogenous clock, universally availabie
with all of the correct periods. However, no theory of how
an organism senses this clock or makes use of its periods can

be given at present.
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The elemental binding forces in molecules, crystals,

and in the microcosmos in general, are electric. Although

structural pattérns are determined by these coulomb forces,

which are stronger than gravitational forces by a factor

S =.e2/Gmpme = 1039°356, this need not per se obscure

manifestation of the microcosmic gravitational clock whose

temporal effects rather than force effects are sought.
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Living matter is composed largely of the four élements,
Carbon, Oxygen, Nitrogen, and Hydrogen. About 96% of the
hﬁman body by weight is distributed among these four elements.
In Table III are given the fundamental gravitational periods

of these basic organic elements.
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The details of such a theory will depend on the answer to a
question that has remained unanswered for 300 years —- what

is gravity?
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(B)

Tﬁis_basic.gravitationél period of dpproximately two hours

in processes on the human scale. Such a frequency could there-
fore play a useful role in the organization of various systems,
including living matter that require a metronome to govern

their basic rhythyms and cyclical processes.

A second basic period that has an order of magnitude suitable
for time control of many life processes is the "electron
period" based on mg, and Lor the mass and "radius" of the
electron. The existence of a clock with a pulse period of

about one-tenth of a second (Table II) would be useful for

~governing processes such as heart beat, optic imaging, etc.
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ATOMIC, BIOLOGICAL AND COSMIC CLOCKS

I. INTRODUCTION

The definition and measurement of time ultimately deéends
on the existence of cyclical phenoﬁena. Units of time are
definable only in terms of some periodic motion such as the
earth's rotation, annual motion, or the lunar cycle. Clocks
require for their operation and calibration a basic beat such
as provided by a pendulum, a piezzo electric crystal, a
multivibrator, or molecular vibration. Although both in physics
and psychology we have the concept of a "linear flow of time"
and frequently represent time as a uniformly increasing
independent variable, operationally time must always be
inferred from periodicity.

Since the advent of the jet age we have become increasingly

aware of the importance of the biological clocks that regulate

many of the procésses that take place in living organisms.
Extensive experimental work shows that in all bio-organisms

there exists a "clock" that allows the organism or its components
- to calibrate their temporal processes.

It is reasonable to surmise that these biological clocks,
like other cloéks, must include a basic component that suppiies
energy or information with a periodic content. The usual name
given to this component is the zeitgeber or "time(giver." The
zeitgeber is some sort of oscillator whose periods can be sensed

by the organism and used either to calibrate or to govern the
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organism's temporal processes. The zeitgeber appears to be
universally accessible to organisms even to the level of a single
cell. It supplies intrinsic fundamental or harmonic periods
that are closely equal to biological rythyms such as 24 hours
and 28 days. The macroscopic properties of the zeitgeber do
not permit a decision whether the clock is endogenous or
" exogenous, 1l.e., whether its basic oscillator is independent
of the environment or is conditioned by the environment. However,
most of the experimental results could be accounted for by an
endogenous clock possessing exogenous periods, i.e., periods
corresponding to the principal geophysical and astronomical
cycles to which life seems tuned.

in this paper a zeitgeber méeting these prescriptions is
suggested. It is an endogénous physical oscillatér present in all
matter and possessing all of the correct periods. However, no

theory of how a biological organism senses this oscillator

or makes use of its periods can be given at present.

ATOMIC GRAVITATIONAL CLOCKS

The existence of a fundamental temporal bound associated
with_gravitating bodies has long been recognized in physics
ahdbastronomy. This bound is the hinimum periéd, T = 2nR3/2//§M,
given in terms of a body's mass M and radius R with the

dimensionality of time. It represents the circular velocity at

—

the surface of thé body and is a minimum period both in the sense

that no satellite orbiting the body can have a smaller orbital
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period than'% and the body itself cannot have a period of
rotation less than ¥ and remain gravitationally stable. The
period ¢ determines a basic "frequency" that governs dynamical
behavior in the neighborhood of the gravitating body. For

example, Kepler's Third Law in terms of ¥ is simply: (orbital

)3/2

period) = (¥/R3/2) (orbital semi-major axis . In general, it
might be said that the presence of a gravitating mass establishes
a local clock that "beats time" for all mechanical movement in
the neighborhood of the body.

The minimum period,%, is also called the "Schuster
Period,"” and may be expressed in terms of the mean density p
of the body by, pt? = 31/G. The value of 1 for the earth is
about 84 minutes, for the sun about 2 3/4 hours, and for the
_moon 108 minutes. Assuming a mean density of a galaxy of 10'-23
‘gm/cm3,‘the galactic minimum period is of the order of 108'years,
about the same as the period of rotation.
| The effects of this gravitational clock have ‘been
observed in macroscopic scales from planets to the visible
sample of the universe. There is no theoretical reason these
~gravitational clocks should not also be operative on a micro-
scopic scale, but the manifestation of their effects is
presumed submerged in the variety of effects resulting from
the action of other more dominant forces such as Coulomb forces.
But is this really the case? The elemental_binding forces in

molecules, crystals, and in the microcosmos in general, are

electric. Although structural patterns are determined by
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these Coulomb forces, which are stronger than gravitational

39'356, this need not per se

e

obscure manifestation of the microcosmic gravitational clock
whose temporal effects rather than force effects are sought.

In spite of the entirely negligible role of the gravitational
force in microscopic structure, it may nonetheless be possible .
that the effects of the gravitational clock of fundamenfal
particles are detectable on a macroscopic scale provided (1)
the basic gravitational period of the atomic clock is quite
different from the basic electric period of the atomic clock,

and (2) provided that there is general phase coherence so that

the intensity of pulse will be augmented by a factor proportional
to the number of atoms. '
The atom as an "electric clock" has many fréquencies that

are manifest in optical, X-ray and other spectra. An example

of a basic electric frequency associated with the atom is that
corresponding to the period of orbital revolution of an electron

in. the first Bohr orbit of a hydrogen atom. This time interval

-15.81822 2Ta 1

seconds, and is equal to o =
acC 2CRx
the radius of the first Bohr orbit;q is the fine structure

where a_ is

is 10 o

ppnstant;.c the velocity of light; and Rw, the Rydberg constant.
The basic gravitational frequency of the hydrogen atcom

will be the frequendy corresponding to the minimum period

3/2
S
/ey,

J
T = 27a
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where mp is the mass of the proton and a, is the first Bohr radius.
Using the values in Table I (Cohen and DuMond, Rev. Mddern
Physics, v. 37, No. 4, Oct. 1965), we obtain for ¥ the first

value in Table II. The mass values are based on the unified

scale of atomic weights, 12C = 12,

It is somewhat surprizing that the combination of

fundamental constants whose c.g.s. values range from 10723

to 10.6 define by analogy with macro.gravitational relationships
a basic time period of almost exactly two hours. This

fundamental gravitational period of the hydrogen atom, which we

19.678

may designate by T1,, is 10 = /F times as great as the basic

H’
Coulomb period of the hydrogen atom. The value of Ty is not
located on the micro or macro ends of the temporal scale but falls
in the very range of time periods that are associated.with life
processes. The existence of a ubiquitous oscillator - the
hydrogen atom - having a temporal period commensurate with
‘astronomical and biological periods suggests that .the hydrogen
atom might possibly play a role of zeitgeber in biological clocks.

3/2

While the quantity Tt = 27R //GM has the dimensionality

of time and 1, has an order of magnitude in the right range for

H
providing beats useful for biological rythyms, the overriding

question is beats of what. If it turns out that the T periods

cf atoms are indeed the zeitgebers for biological clocks, then we
are not only confronted with a basic biological phenomenon, but
with a physical phenomenon having far reaching revolutionary

implications.
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In addition to'the'gravitational period, associated

Tyr
with the neutral unexcited hydrogen atom, by means of formula
( ), two other basic gravitational periods may be derived.
One of these periods that has an order of magnitude suitable for
temporal regulation of many shorter physiological processes is
the "electron period" (te) based on m, and Tor the mass and
radius of the electron. The existence of a clock with a pulse
period of about one-tenth of a second (Table II,second value)
would be appropriate for calibrating processes such as heart
beat, optic scanning, etc.

A third gravitational period is the "nuclear period"

(Tn), which is equal to d3T (Table II, third value). This

H
periodicity may be appropriate for very short physiological

processes, such as nerve impulses.
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BIOLOGICAL AND CHEMICAL CLOCKS

INTRODUCTION

One of the products of the jet age has been the increasing

awareness of the role of the internal 24 hour biological clock

that regulates many basic human physiological processes. Jet
travelers, after crossing several time zones in only a few hours
lapsed time, frequently experience a fatigue or malaise that
lasts for several days, while travelers making north-south
trips of the same duration do not experience these symptomsl.
This phenomenon is attributable to the effects of a change of
man's internal clock phase with respect to the phases of some
environmental cycle such as a light-dark, or tidal cyclez.

Biological clocks similar to man's also exist in animals.
For example, bees flown from Paris to America continued éo_go to
feeding places on Paris time, shéwing that they posseSsed an
internal 24 hour clbck that operated independently of outside
cues3.< Extensive experiments4 carried out on animals and
plants show that there seems to exist internal clocks in all
bio-organisms that serve either to calibrate or control the life
rythyms of the organism and its components.

In addition to the 24 hour period, bio-clocks provide
signals corresponding to other basic rythyms. The shortest
of these periods is one and one-half to two hours and is

5

observed in both humans and rats™. Human bodily activity, both

sleeping and awake, has an approximate two hour cycle. Stomach



AGW 2

contractiéns of hﬁngry ratss, rapid eye movement and dreaming
ﬁatterns in humans all show a twp hour cycle. Other longer
bio-periods include the four day oestral and ovulation cycle
in female rats; seven day cycles of certain illnesses in
humans7; and an approximate nine day cycle8. The 28 day
menstrual'cycle is pérhaps the best known human bio-rythym,
but there are still longer periodicities associated with some
diseases. Illnesses with pefiods of over 10 years have been
recordedg.'

| It is to be noted that many of the basic biological
rythyms are nearly synchronous with important geophysical
¢yc1es -- such as the 24 hour solar day or 28 day lunar cycle.
Thié suggests that the external period force-drives the
oscillations of the bio-clock through the action of a pefiodic
sign%l in some physical parameter such as temperature, light
intensity, or pressure (a tidal effect). However, experimentally
controlled elimination of variations in the intensity of known
physical signals (such aé light intensitylo, show that
whatever the period, the clocks seem to be able to operate
independently of external factors. One exception to this, of
course, is gravity. The minute fluctuations in the gravitational
pullé of the sun (24 hours) and moon (24 hours-50 minutes) cannot
be eliminated in the laboratory. But since not all bio-rythyms
are commensurate with geophysical cycles, it appears that the
basic oscillator providing time signals to bio-clocks is endogenous

and is capable of independently producing uniform self-sustained

oscillations like the crystal in a crystal controlled clock.




“AGW 3

A further important property of the bio-clocks is their
apparent universal accessibility to all living organisms even
down to single cells. The 24 hour clock, for example, is known
to be present in man, mammals, plants, and in the unicellular
organisms Euglenall.

Before attempting a theory of bio-clocks, we should remind
ourselveé that the definition and measurement of time ultimately
depend on some cyclical phenomenon. Our units of tiﬁe.aré
defined in terms of a periodic motion such as the earth's rotation
or annual motion, or in terms of electromagnetic vibrations.

All clocks require for their operation and calibration a basic
periodic signal such as provided by a pendulum, a piezzo

.' electric crystal, a multivibrator, or molecular vibrations.
Although both in‘physics and psychology we have the concept Qf a
"linear flow of time" and usually represent time as a uniformly
increasing variable, operationally time must be derived from some
périodicity. It is reasonable to surmise that biological clocks,
like other clocks must contain an oscillator that supplies energy
or information having periodic components. A name frequently
given to this oscillator is zeitgeber or "time giver." The signals
.brovided by the zeitgeber can be sensed by the organism and used
either to calibrate or to control physiological processes.

A list of the conditions which must be satisfied by any
model of the zeitgeber includes:

. - 1) Zeitgebers must be endogenous, i.e., capable of auto-

generation of constant frequency time signals.
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2) Zeitgebers must be containable, and perhaps actually
contained in every living cell.

3) The soufce of the basic oscillations mﬁst be able to 
produce in a consistent and systematic manner frequencies with
quantitative correspondence to all of the observed
bio-rythyms including the sub-set corresponding to the
common geophysical cycles of ﬁhe bio~environment.

4) The model should be based on known physical principles
and concépts.

In this paper a model of zeitgebers satisfying these
prescriptions is proposed. It is an endogenous phyéical oscillator
present in all matter and possessing periods corresponding to
the basic biological and environmental cycles. Though based on
known physical concepts neither the exact nature of the zeitgeber's
pulse nor how a bio-organism senses or makes use of the puise can
be deduced at present. To meet this deficiency, some implications

and ~ further requirements of the proposed hypothesis are developed.
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ELEMENTAL GRAVITATIONAL CLOCKS

Condition 2), that the zeitgebers be a possible component
of every living cell suggests the hypothesis that the‘basic
oscillator is associated with one of the vibrations characteristic
of individual molecules or atoms. If the biological clock
within a.cell in some way can sense, amplify, and transmit the
time signals taken from oscillations generated by elemental
particles, conditions 1), 2), and 4) that zeitgebers must satisfy
would be met. However, the crucial condition for any hypothesis
is 3). The most stringent requirement on any model of a

zeitgeber is the ability to generate time signals with those

have values equal to the values of the various observed periods
of bio-rythyms. The first hurdle, therefore, for a zeitéeber
model is the ability to generate independently of outside factors
time éignals with pefiods of two hours, 24 hours, fou; days,
eeven days, 28 days, and other periods that have been observedv
in both healthy and diseased organisms.

Atoms and molecules possess many characﬁeristic frequencies.
Most of these are well -known from studies of X-ray, optical, IR
and other spectra. These frequencies are too high, however, to be
of any use in generating time signals with periods such as two
hours or one day. For example, the precession»frequency of Ce 133
that is used for the "Cesium Clock" has a value of 9,192,631,770 ,fL”“

éycleS/eecond. The basic frequency of the hydrogen atom, that
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correspondiné to the period of orbital revolution of an electron

in the first Bohr orbit of a hydrogen atom, is 10f15‘81822 seconds.
This frequency is equal to 2Trao = 1 where ag is the radius of
ac 2CRw

the first Bohr orbit; o is the fine structure constant; c the
velocity of light; and Re, the Rydberg constant. These
frequencies are "electric frequencies" and derive from the
Coulomb forces that govern atomic and molecular structure.

Condition 3) cannot be satisfied by characteristic electric
periods of atoms or molecules. However, there are other periods of
time theoretically associated with all elemental particles and
therefore satisfying conditions 1), 2), and 4). These are time
intervals associated with mass rather than éharge, with
~gravitational rather than Coulomb forces.

The existence of a fundamental temporal bound associated
with gravitating bodies has long been recognized in physics and

astronomy. This bound is the minimum period,

m Y= 20r¥?0,
given in terms of a body's mass M and radius R with G being the
Newtonian gravitational constant. It corresponds to the circular
velocity at the surface of the body and is a minimum period both
in the sense that no satellite orbiting the body can have a
-smaller orbital period than T and the body itself cannot have a

. v ’ .
period of rotation less than T and remain gravitationally stable.
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The period % determines a basic "frequency" that governs dynamical
behavior in the neighborhood ofvthe_gravitating body. For exampie,
Kepler's Third Law in terms of T is simply: (orbital period) =
(%/R3/2). (orbital semi-major axis)3/2. In the above sense it
méy be said that the gravitational field associated with any mass
establishes a local clock that provides time signals for the
dynamical'motions in the neighborhood of the body.
The minimum period, %, also called the "Schuster Period,"

_mgy be expressed in terms of the mean density p of the body by,
E¥23= 31/G. Some approximate values of ¥ are: for the earth

84 ﬁinutes, for the moon 108 minutes, and for the sun 2 3/4 hours;

gssuﬁing a mean density of the milky way of 10—23_gm/cm3, the
. galactic minimum period is of the order of 108 years or about

the same as its period of rotation.

Since the‘effects of this gravitational clock have been
observed on the cosmic end of the time scale from planets to the
largest known aggregates of matter in the universe,'we may

- logically ask: are é;avitational clocks also operative on a micro-
cosmic scale? Theoretically, the gravitational clock should be
_universal, associated with all matter( whatever its mass. The
Schwarzschild_solqtion'tp the fielq equations of general
relativity establishes for all masses having épherical.symmetry the
relation (RSRCZ/R3) = k, a constant that depends on the density
distribution; where Rs is the Schwarzschild‘;adiﬁsijGM/cz; and

R is the radius'of curvature of space-time at the coordinate .

® .

distance R from the center of the'body (R > the physical radius).
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Substituting the value of R gives,
(R /c)? @ r3/26M.

From this relation it is seen that a local time period is defined
by the ratio of the local curvaturé of space to the velocity of
propagation of light and that this period is inversely
proportional to the square root of the mean density of matter
within the coordinate distance R. Hence a gravitational period --
equal to t if the constant of proportionality is 8w2 -- should
exist in the neighborhood of all masses regardless of the
magnitude of the mass or of the spatial scale of the material
. aggregate involved.

It is usually assumed that microcosmic gravitational
effects are submerged in the variety of effects resulting from
the action of other dominating forces such as Coulomb forces. The
._binding forces in molecules,vcrystals, and in microcosmic structures
in general, are electric forces which are stronger than

39.356

gravitational forces by a factor S = éz/Gm m_ = 10 where e

p e
is the charge on the electron, mp the mass of the proton and-me the
mass of the electron. The fact that microcosmic structural patterns
are determined by electric forces need not per se obscure macroscopic
manifestation of the existence of microcosmic gravitational clocks
where temporal effects rather than force effects arevinvolved.

In spite of the negligible role played by'gravitational force

iﬁ‘microscopic structures, it may nonetheless be possible that the
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that the temporal effects of microcosmic gravitational clocks of .
fundamental masses are detectable on a macroscopic scale provided
some condition holds such as that there be sufficient phase-
coherence among the periodic atomic gravitational signals that
théy not be lost in summation over random phases.

The basic gravitational frequency of the hydrogen atom
will be the frequency corresponding to the minimum period,

v 3/2, —
T = 21rao //Gmp.

Using the values in Table 112, we obtain for T the first value

in Table II, 2hOm4]S. The mass values are based on the unified

scale of atomic wéights, 12C = 12,

It is surprising that the combination of fundamental

23 6

constants whose c.g.s. values range from 10 “° to 10 ~ define in

accordance with universal gravitational relationships a basic time
period for the hydrogen atom of almost precisely two hours. This
fundamental‘éravitational period of the hydrogen atom, which we may

19.678

- designate by T is 10 or /S times as great as the basic

Hl
Coulomb period of the hydrogen atom defined above. The value of

T, not being located on the micro or cosmic ends of the temporal

H
scale but falling in the very range of time periods that are

characteristic of life processes suggests that basic gravitational
periods may be the clue to satisfying condition 3). The existence
of a ubiquitous self-contained oscillator -- the hydrogen atom --

having a temporal period equal to the shortest observed bio-rythym
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and biological periods suggests that the hydrogen atom might be
one of the zeitgebers supplying time signals for biological clocks.

In addition to the gravitational period, associated

Tyr
with the neutral unexcited hydrogen atom, two other basic
gravitational periods that may be calculated by means of Eg. (1)
should be mentioned here. One of these having an order of magnitude
suitable for temporal regulation of many shorter physiological
processes is the "electron period" (Te) based on mg and N thé
mass and radius of the electron (Table II, second value).
Harmonics of a clock with a pulse period of about one-tenth of a
second would be appropriate. for calibrating such processes as
heart beat and breathing while the fundamental has a period
closely equal to that of the slowest &-waves in the brain (1/8 sec.).
For completeness, a third‘gravitatibnal period, the "nuclegr
period" (Tn), is included (Table II, third value), being taken
equal to d?TH.
At this point in the development we recognize two
-important questions raised by the hypothesis that éravity
associated with elemental masses is generating time signals.

The first question has to do with the "addition" of time
signals. If periodic gravitational effects are associated with all
masses, how are the basic periods and phases to be combined when

masses are grouped in larger aggregates. This question will be

taken up in the next section.
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. A second and even more basic question, concerns the
physical nature of the time signals themselves. For certain
quantitative purposes, such as meetipg condition 3), we may
speak simply of time signals and conﬁern ourselves with the values
of their periods without inquiry into their other physical
properties. We may reasonable take the minimum or Schuster period
as a fundamental time period associated with all mass. But if
gravitation has periodicities, iﬁ there are time signals, we
must inquire: periodicities and tfme signalé in what. Success
in satisfying conditions 1), 2), and 3), has now re-opened
condition 4). There now appears to be not only a biological
phenomenon to be modeled, but also a physical phenomenon. This

. ' general question will returned to in section 4. .




TABLE I

Quantity value loglo
a, 5.29167 x 10 cm - 8.276407
G 6.670 x 10 Sc.g.s. - 7.175874
m 1.67252 x 10 %%gm ~23.776629
m_ 9.10908 x 10 2°gm -27.040525
r, 2.81777 x 10 "Pcm ~12.550094
o 7.29720 x 1077 - 2.136844




TABLE II

Mass Radius 10910 ¥ ¥ in seconds ? Equivalent

m, a, 3.8598206 7241.3 2R gl 43S
j}e ry -0.918761 0.120570

m r -2.550770 0.00281339

P e




~gravitational forces should be 10

.or 2

A. G. Wilson
9/9/68

While these relatively weak gravitational forces play no
primary role in determining.microscopic structural patterns,
they may in some sense afford a minute perturbation in these
structures. For example, a dimensional argument states that
two forces (dimensionality [ML/T2]), operating on the same

masses over the same linear distances, as for example on atomic

or molecular masses over atomic spacings, would possess temporal

effects inversely proportional to the square root of the ratio
between the magnitude of the forces, In the case of Coulomb

and gravitational forces, the ratio of temporal effects should

172,

then be S that is, characteristic times associated with

19.678 {imes as great as those

associated with Coulomb forces. A hypothetical pertubative

effect due to the operation of gravitational force in the

hydrogen atom would accordingly have a basic period of 1019‘678

< 10-15-818 _ ;,3.860

h

seconds. This is equal to 7244 seconds

0™ 44°. This value is of the right order of magnitude

for the period of a basic oscillator useful in providing time

signals for various bio-rhythms. Furthermore, its near

h m

commensurability with 24 0 0° suggests it may indeed play
some role in the oscillator mechanism for an endogenous

circadian clock.
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THE'GRAVITA?IONAL CLOCKS QF‘CHEMICAL ELEMENTS

The combining question may be formulated as folldWs:
. If there exists a fundamental time peridd associated with every
mass, then when elemental masses are combined in aggregates whose
structure is determined by nuclear, Coulomb, or gravitational
forces, how_is the gravitational period of the aggregate mass
related.to the gravitational periods of the constituent particles.
Cosmic bodies are held together by combinations of
electric and‘gravitational forces. Their masses and sizes appear
in most cases to lie within limits imposed by two types of bound:
a bound on density and a bound on potential. While the aggregate
mass is always closely equal to the sum of the masses of the
constituent particles, the size of an aggregate may depénd on
mass in many ways. In an aggregate of N particles that is
density bounded, the aggregate radius is equal to 3/N times the
‘elemental radius. This leads to the equality of the aggregate and
elemental gravitational periods. An aggregate of N.particles
Subject to a bounded potential, on the other hand, requires that
the aggregate radius be N times the elemental radius. This leads
to densities inversely proportional to N2 and to aggregate
éeriods equal to N times the elemental period. Solid cosmic
bodies 'such as planets are examples of the first type of size-
mass relation; clusters;_galaxies, clusters of galaxies are
examples of the second type. Stars occur at the intersection of
the density and potential limits and are structured according to

both types of bound.
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For the purpose of deriving the gravitational periods of
heavier atoms, which of the two limiting types of combining of
heavy nuclei from nucleons, if either, is applicable? This is
not known a priori, but if we assume that atoms belong to the
species of bodies that follow a bounded potential form of
compounding, we are led to gravitational periods that correspond
to observed macrocosmic rhythms.

For the hydrogen atom the gravitational potential is

given by

Assuming this value of potential to hold for all atoms, we have

r, = a where r

i 2 is a "gravity radius" and A is the

A
Ol—n-—~ A

P

atomic weight of the atom; A and m, being in the same units. The

gravitational period for an atom of atomic weight A then becomes

3/2 3/2

T = = =
A :anA 21Tao A Ty %_ .
. ' P
/GA yGIT_m
- - PP

In the unified system of atomic weights, 12C = 12, the proton

mass, m? = 1.00727663, Hence,




AGW 14

(2) ’TA(seconds) = 7241,3675 (A) = 7189.0554 (A).
1,00727663 .

For example, for carbon 12, by Eq. (2) the value of fA becomes

h m

23" 57™ 48%.7. The proximity of this atomic gravitational period
Witﬁ the earth's 24 hour period suggests that the carbon atom may
ineeed be the zeitgeber for the circadian rhythms in most living
organisms.

| There are several uncertainties in the definitions of the
VariousAgravitational periods that lead to slightly different
values. For example, the use of the mass of the hydrogen atom,
My, instead of the proton mass, mp, in Eq. (1), leads to
approximately a two second difference in the basic period of the

hydrogen atom, 2 o™ 39 (my) as against 2 o™ 415 (mp). For

the carbon 12 isotope, this difference becomes larger, Zéh 56™

h

]

m

385.2 (mH) as against 237 57 48°5.7 (mp). The former value is

h m

quite close to the éarth's rotation period of 23" 56 4%.099.
In addition to uncertainty regarding the correct choice of mass
for the basic unit, it must be remembered that the choice of
base for the scale of atomic weights is arbitrary. This also

affects the values of the periods. For example, using the

previously adopted physical scale of 0 = 16.0000, in which the

mass of the proton is 1.007593 and the weight of carbon 12.011,

the carbon period is 230 5gM

230 5oM

408.7, (mp) as against a period of

85.9, (m,) for carbon = 12.01115 on the unified scale.
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At this stage the questlon of higher precision is
premature. After all the term‘clrcadlan means only "aroﬁnd one
day" and adequately describes the precision of our present
knowledge of bio-rhythms. Translated into longitude differences,
the uncertainties in periods corr35pond to two or three miles at
temperate latitudes. There have been no observed bio-clock
responses to local east-west movements of organisms of this
order. However, the relatively small differences introduced by
the choice of (mH) or (mp) or of the base for the scale of
atomic weights may later prove important in the identification
of the correct resonances between chemical and environmental
periods. It may be important, for example, to decide between
a sidereal and a solar period resonance. It might even someday
'brové useful to have a scale of atomic weights, based on‘one of
these 24 hour periods.

While carbon is the fundamental element in living matter
:énd the carbon clock may be expected to be the most important,
other elements also are omnipresent in life processes and their
‘clocks may either directly or through resonance periods with
‘the carbon clock provide time signals for other bio-rhythms.

Living matter is composed primarily of Carbon; Oxygen,
Nitrogen, and Hydrogen. For example, in the human body about
96% of the mass is distributed among these four elements. In
Table III are given the fundamental‘gravitétional periods of

these basic organic elements as derived from Egq. (2), based on
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(mp) and ﬁhe unified scale,

In part A of Table III, the,gravitatidnal periods are
derived for the most abundant isotopes: Carbon 12, 98.89%;
Nitrogen 14, 99.63%; and Oxygen? 99.76%. In part B of the
table, the atomic weights used are not of particular isotopes
but of the naturally occurring abundancies of all stable isotopes.
The periods of other chemical elements and isotopes may be
derived in a similar manner from Eg. (2).

It cannot be determined at the present whether the
zeitgeber is a single atom or is the combined effect of many atoms
whose signals are in phase. Under the first assumption, the
values in Table III-A would obtain;under the second assumption,
the values in Table III-B would be the meaningful ones to
adopt (subject, of course, to the choice of the scale of- atomic
weights and (mp) or (mH) as the correct mass). In first
approximation we may round off the values to Carbon, 24 hours,
Nitrogen 28 hours, and Oxygen 32 hours, the errors being but a

minute or two.



TABLE III

5.060776

Part A
Isotope Atomic Wt. | log;, T sec T sec Equivalent
(Unif.Scale)
12 h.-m,.s
c 12.00000 4.935853 86268.66 23%57™48% . 66

; S Whal

14y 14.00307 5.002895 100668.85 | 2757M485.85

164 15.99491 5.060654 114988.29 31P56™285 29

Part B
Element Atomic Wt. log, 4T sec T sec Equivalent
L'-"
h_..m,s

Carbon 12.01115 4.936256 86348.82 23759™gS g2
Nitrogen | 14.0067 5.003008 100694.94 | 27M58M145, 94
oxygen 15.9994 115020.57 315705 57




AGW 17

RESONANT PERIODS

The hypothesis of elemental.gravitationai clocks
structured under the condition that the gravitational potential
remains constant, leads for all elements to the proportionality
of the period and the atomic weight of the element. Explicitly,

from Eq. (2)
TA = TH a/mp.

If for a pair of periods Tar Tp_ 7 assoclated with two different

[ 2

elements, we can expect that beat type phenomena usually
associated with oscillations will be present, then the synodic
or resonance period, 1, of two elements with atomic weights AW

and A2 will be

1 - 1‘ =m
T T T —
R Al A

For the elements in Table III-A, to errors of less than three
parts in ten thousand, the atomic weight A may be replaced by

the nearest integer [A]. Since TH/mp very closely equals two

hours, we may then write

(3) 1y = [a]a,] .2°

[A2] -IAa,]
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The resonant periods by pairs among the basic organic

elements, C, H, O, N, derived from Egq. (3), are given in

Table IV. The carbon-nitrogen resonance is exactly seven days,
the carbon-oxygen is four days} and the nitrogen-oxygen is nine
and one-—third days. In addition, theée elements have a triple .
resonance of exactly 28 days, long recognized as a very funda-
mental bio-period. |

It is of extreme interest that the four elements composing
over 95% of organic material have a gravitational resonance
period equal to a period that has been observed to play so
important a role in life processes, both plant and animal. But
it is most remarkable that this period nearly coincides with the
sidereal period of the moon of 27.322 days (synodical month,
new moon to new moon = 29.531 days). The periodic similgrity
between many life processes and the phases.of the moon is well
established but it has always been troublesome that a causal
linkage has not been discovered. We may now say that there
exist no "astrological" linkages. There is nothing causal
between the moon and the life rhythms, the illusory linkage

results from the coincidence of the lunar period and the organic

‘elements resonance period. The endogenous chemical clocks can

account for the observed 28 day rhythms without invoking the
moon, just as the endogenous carbon clock can account for

circadian rhythms without invoking the sun.
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There may well be enyironmental - chemical resonances
and the relative role of environmentél clocks to endogenous
clocks must be ekplored; But we at least have been able to
provide a mechanism satisfying those observations that demand
an endogenous source of time signals corresponding to observed
rhythms and capable of independence of environmental clocks.

The phenomena of the coincidences of the periods of the

chemical clocks and environmental clocks must not be ascribed

to chance. There are too many "coincidences" (more to be
developed later). It is most logical to assume that the
elemental gravitational chemical clocks provide not only signals
for regulating the rhythms in bio-organisms but also play a

role in the morphogenesis of cosmic bodies. The cosmic periods
also derive from the elemental gravitational clocks. We thus
have the elemental gravitational clocks as a "first cause." Both

bio-clocks and cosmic clocks derive their characteristic periods

from the basic clocks. The observed coincidences of periods led

to the surmises of astrology, but the causal linkage is not be-
tween the heavenly bodies and the affairs of man, but both the

motions of the heavenly bodies and the rhythms of life spring

from the common cause of the elemental gravitational clock.



TABLE IITL

|

Element Atomic Wt. logqg T sec T sec Equivalent
(Unif.Scale) - .
Hydrogen | 1.00727663 | 3,859821 7241.37 2ho™41% 37
| carbon 12.01115 4.936256 86348.82 23P59™gS g2
ngygen 15.9994 5.060776 ' 115020.57 31R57M05 . 57
Nitrogen | 14.0067 5.003008 100694.94 | 27758™145.94




TABLE IV

Resonant Periods of C, H, O, N .
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However, the 24 hour clocks
of astronauts and cosmonauts seem to operate effectively in
earth satellite orbits. §Since the response of the orbiting
vehicle to all gravitational fields is such as to neutralize
for the astronauts any residual external gravitational signals,
it appears that the zeitgebers operate independently of all

external influences.
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ROTGRAV.W52 DISK:TIME February 17, 1994
SYNCHRONIZATION OF THE EARTH'S ROTATIONAL
AND GRAVITATIONAL PERIODS A g3/ e
' 'ﬁ@;’ 199524y
H $%

Four basic periods are associated with the earth: The revolution
period of one year, the lunation period of one month, the
rotation period of one day, and the gravitational (or
Schuster)period of 84 minutes/plus a few seconds) Since these
various periods have no simplé integral multiples, there is the
problem of commensuration, or finding the simplest ratios of
their values. For example, since ancient times solutions to the
problem of when the full moon will occur on the same calendric
date have been sought. One answer was the Metonic Cycle of 235
lunations = 19 years. (235 synodical months = 6939.6882 days,
while 19 years = 6939.6018 days, the difference being 2h 4m 24s)
In the western hemisphere, the Mayans found that 81 moons = 2392
days before the moon appeared in the sky at the same phase at the
same time.

The same problem arises in determining the synchronization of the
mean solar day with the earth's G-period. To a first
approximation the G-period of the earth is 84 minutes. This wvalue
synchronizes exactly with the 24 hour rotation period of the
earth every seven days. That is 120 x 84 minutes = 7 x 24 x 60
minutes = 10080 minutes. Is it possible that this first
approximation to G-period solar day synchronization could be the
basis of the week? The question arising here is in what manner
did ancient humans sense the G-period.

But the value of the G-period is not exactly 84 minutes. Using
the present most probable value for the earth's density of 5.517
+ 0.004 gm/cm®, the G-period is about 84 minutes and 19.61 + 1.83
seconds. This means that there is not precise synchronization
every seven days, but there is an error of approximately 120 x 20
= 2400 seconds (40 minutes)each week. This value is approximately
half a G-period, so we would expect a better approximation to be
a fortnight. Actually a minimum synchronization error of 33.4

X X Tae M
seconds occurs in 13 days. But this error is accumulative so an ;&JWMN
exact synchronization, if any, will occur only at some much &%Z
longer period. 27{3
To find synchronization periods it is necessary to solve the Jh%

Diophantine equation

N, x CYCLE, = N, x CYCLE,
where N, and N, are integers. For the choice of cycles, G-period
and day, we get the following table:



COSCLOCK. P51 DISK:COSNUMBERS May 8, 1991

III, GRAVITATIONAIL CLOCKS
A. G. WILSON 06/11/68

The Schwarzschild solution to the field equations of general
relativity establishes for all physical bodies the relation

(1) R, R,?/R® = constant

between R,, the Schwarzschild or gravitational radius of the body,
R., the local radius of curvature of space, and R the physical or
metric radius (Ref. 1}.

This expression implies the existence of a fundamental time
period associated with every physical body. Substituting 2GM/c?
for R, gives,

R2/c? = kR¥/2GM = T2

This local basic time period, T, 1is seen to be proportional to the
ratio of the local radius of curvature of space to the velocity of
light. The universal wvalidity of Equation (1) infers the existence
of a local characteristic time period associated with the local
curvature of space. This provides a "gravitational clock"™ which
governs the dynamical motions of all cosmic bodies.

If the constant k is taken to be 8m?, the basic period T
becomes equal to the minimum gravitational period, t, assoclated
with gravitating bodies. This period,

(2) 1?2 = 4m® R3/GM,

sometimes called the "Schuster Period", is the well known limiting
minimum period for bodies orbiting about a spherical mass M of
radius R. Equation (1) also is the limiting rotation period for a
gravitating body with dynamic stability.

Although for small distances the effects of gravitational
forces are negligible with respect to other forces (Coulomb
forces, for example, are 10¢° times greater than gravitational
forces), Is 1t possible to detect the presence of the
gravitational clock of small fundamental masses such as atoms and
elementary particles? Certainly it is not possible to detect the
gravitational force effects associated with these entities whose
structure is overwhelmingly determined by coulomb, strong and weak
forces, but it still may be possible to detect the temporal
effects of the gravitational clock especially if the basic
gravitation periods are markedly different from the coulomb
periods associlated with the atom.
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ON CHON See glse 1993 # 33

AND THE BOUNDARIES OF TIME

Aristotle held that time was an inference of motion. But there
appears to be a species of time that is not derived from motion.
This time is associated with density and manifests itself as a
bound to allowable periods and frequencies. A familiar example is
the Schuster Period, a bound on the period of an earth orbiting
satellite when only gravitational and inertial forces are acting.
This period of approximately 84 minutes is numerically related to
the mean density of the earth and to the universal gravitational
constant,G. In general the lower limit to orbiting periods is
given by,

(1) e
GM

Where R is a size parameter (radius) and M is a mass parameter.
For a spherical body, this boundary time, T, in terms of the
mean density p, is given by,

(2) T=~|_3.E
Gp

These equations govern gravitationally based temporal boundaries
and are usually applied to astronomical bodies. Since gravity is
a force weaker than the other forces by some 40 orders of
magnitude, it seems quite inappropriate that these boundaries
have any meaning for bodies where gravity plays an insignificant
role, in particular on meso and micro levels. However, there is
nothing known that precludes their universal applicability. We
therefore make the assumption:

Assumption 1] Equations 1) and 2) may be applied to any entity
occupying space and possessing a definite mass.

When applied to objects on the atomic level at first thought it
would seem the results would be insignificant, but we are dealing
with time, not force, and some surprising values emerge.

Taking for size the Bohr radius, a,, and for mass, m,, the mass
of a proton, the time 71,, turns out to be almost exactly 2 hours!

3
a
(3) 1,520 ° = 7239.94sec
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. PAGE 2.
The general theory of relativity predicts that the rate at which a clock runs varies as
the strength of the gravitational field at the location of the clock. The stronger the field, the
slower the clock rate. An atom in a strong gravitational field, for example, will radiate at a
lower frequency than the same atom in a weak field. This is manifested as the gravitational
red shift. If we designate the period of time that increases with gravitational field strength by
T, and the field M/R by ®, then T = T(®) such that if & increases T will increase.

On the other hand the time that we designate by 7 which is proportional to p?*?,
varies as RAV/®, decreasing as @ increases. If T is the basic period operating in a
gravitational field of strength &, how is 7 to be interpreted? What sort of time does 7
measure? If atoms march to T, what marches to 7?7 T may be a "bridge time" between
photons and hadrons, while 7 governs the time table for larger material bodies. *

The properties of both T and 7 have been observationally confirmed. T through
comparisons of clock rates at different terrestrial field strengths and 7 through planetary and
binary star motions. And from the above with one time increasing with field strength and the
other decreasing, we must conclude that there are at least twd@@;ﬂggb 7kinds of time.

Recent observational determinations of Hubble’s parameter have led to an age of the
universe that is less than the age of oldest stars. This paradox possibly has its resolution in
the existence of different times. In the region of star formation the density is large and

. therefore 7 is small. If star formation marches to a local 7 rather than to a global T, then as
viewed locally, there would be ample time for the evolution of the stars, even though the
observer’s clock suggests a paradox. The entire matter hinges on the proper interpretation of
the time 7. o

27 R a Dt T oAtk
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III, GRAVITATIONAL CLOCKS
A. G. WILSON 06/11/68

The Schwarzschild solution to the field equations of general
relativity establishes for all physical bodies the relation

(1) R, R?/R® = constant

between R,, the Schwarzschild or gravitational radius of the body,
R,, the local radius of curvature of space, and R the physical or
metric radius (Ref. 1).

This expression implies the existence of a fundamental time
period associated with every physical body. Substituting 2GM/c?
for R, gives,

R?2/c? = kR*/26M = T?

This local basic time period, T, 1is seen to be proportional to the
ratio of the local radius of curvature of space to the velocity of
light. The universal validity of Equation (1) infers the existence
of a local characteristic time period associated with the local
curvature of space. This provides a "gravitational clock" which
governs the dynamical motions of all cosmic bodies.

If the constant k is taken to be 87?, the basic period T
becomes equal to the minimum gravitational period, 7, associated
with gravitating bodies. This period,

(2) 72 = 4m? R*/GM,

sometimes called the "Schuster Period", is the well known limiting
minimum period for bodies orbiting about a spherical mass M of
radius R. Equation (1) also is the limiting rotation period for a
gravitating body with dynamic stability.

Although for small distances the effects of gravitational
forces are negligible with respect to other forces (Coulomb
forces, for example, are 10* times greater than gravitational
forces), Is it possible to detect the presence of the gravita-
tional clock of small fundamental masses such as atoms and
elementary particles? Certainly it is not possible to detect the
gravitational force effects associated with these entities whose
structure is overwhelmingly determined by coulomb, strong and weak
forces, but it still may be possible to detect the temporal
effects of the gravitational clock especially if the basic
gravitation periods are markedly different from the coulomb
periods associated with the atom.
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MORE ON GRAVITATIONAL TIME

(995 #5 %

aiso

Since Aristotle our physical notions of time have been derived primarily from motion.
This is true of Newton’s contributions to the subject and also of Einstein’s (up through
special relativity). However, Newton’s modification of Kepler’s Third Law including the role
of mass, introduced a notion of time based on the density of matter rather than derived from
motion. Specifically,

2mR3/? 30
T = or T = ——
JGM Gp

where 7 is the time period associated with a domain of radius R and of mass M, (here
assumed to be spherical), and p is the mean density within the domain, G being the
gravitational constant. In these two equations motion is not explicitly present. The period of
the "beat of the clock" is determined by the density of the system. This is a gravitational

clock, time being manifested as a result of the presence of matter rather than the motion of
matter. wineity -

The current Big Bang Theory of the origin of the universe, tells us that the universe
came into being with a high density concentration of energy which immediately began to
expand. Very quickly, through the appearance of particles, the universe acquired mass.
While the size of the universe continues to increase, whether mass is bounded or still
increasing is uncertain. In either event, the mean density seems to be decreasing. But before
we can effectively discuss changes in size, mass, density, clock rate, etc. we have to be clear
on the meaning of our units. The problem is like the problem of comparing purchasing
power over the years in inflationary economics. One has to convert earlier dollars to today’s
dollars, today’s wages, etc. in order to obtain meaningful comparisons.

If we assume that the fundamental physical constants, G, c, and h, are really constant,
(G=Newton’s gravitational constant, c=the velocity of light, h=Planck’s constant), then we
are provided with "absolute" units of extension, mass, and duration. Explicitly,

R = Gh M = lhc = Gh
P c3' P G' P c5

R;, the unit of length has a cgs value of 4.051x10 cm
M,, the unit of mass has a cgs value of 5.456x10°¢
Tp, the unit of time has a cgs value of 1.351x10* sec

5

From these we can derive a unit of density, pp =

with a cgs value of 5.157x10** g/cm’. G*h
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MUSIC OF THE SPHERES PART T

It has been shown that the basic frequency associated with the Hubble universe is
given by,

vy = (auS)?? /1,

where t, is the Planck time, & is the fine structure constant, [ is the proton/electron
mass ratio, and S is the coulomb/gravity force ratio. The wavelength associated with
this frequency is

XU - C/ VU - (aus)mlo - 1027.932889cm

where 1, is the Planck length = 10327°'*% ¢m_ The sizes and masses of various
objects, from sub-atomic particles to clusters of galaxies, are given as sub-
harmonics in the following table. (Values are log;y) ; Bm=2n) <f. 2, frusora, | 2) )

# | n (apuS)® m | A"=(apS)"l, | M=c¥GA™
cm gm
1 | 372 160.724434 { 1 27.932889 56.062236 Fifth X
6 2 | 5/4 150.603694 | 5/6 17.812149 45.941496 el {/
3 | 6/5 |48.579547 | 4/5 15.788002 43.917349 5“’
4 | 9/8 |45.543324 | 3/4 12.751779 40.881126 bk e Gﬁké’
5 1 140.482955 | 2/3 1 7.691410 35.820757 feme K
| 6 | 9/10 | 36.434660 | 3/5 3.643115 31.772456
%: 7 | 3/4 30362217 | 1/2 -2.429328 25.700019 focrth
8 | 3/5 |24.289773 | 2/5 -8.501772 19.627575
. 9 | 1/2 120.241477 | 1/3 -12.550068 15.579261
5 10| 0 0 0 | -32791545 | -4662198 | F

~-2%

Page 1
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Notes:
> The values in the mass column are given by two equations,
A" ¢G or (opuS)lm, => Gm/A™ = (auS)®

> As in music, the even harmonics are repetitive while the odd harmonics
represent innovations. Thus “octave” frequencies are not likely to manifest,
only odd harmonics may support existence.

> Row 1. The values in this row are those of the Hubble universe. The
fundamental wave length of 27.932889 cm is based on the characteristic time
17.456057 sec which is corresponds to a value of the Hubble parameter of
71.977 km/sec/mpc.

< Row 2. One light year = 17.975932 cm. This object is close to 1 ly. in size
(all sizes are those of Schwarzschild radii) and has a mass of 12.642 solar
masses. (One solar mass = 33.299 gm) This mass suggests a galaxy.

> Row 3. Size is of the order of 100 astronomical units (1 A.U. = 13.174927
cm) Mass is of the order of 10'° solar masses. Globular cluster?

> Row 4. This value of A is close to the minor axis of the orbit of Mercury,
which is equal to 12.753373. Apophasis involved here?

> Row 5. The value of A in this row is of the order of the size of a neutron

star. Mass 1s of the order of 100 solar masses.
Mz 35582072857  [ROx @M: 35,378 50443

> Row 6. Size < a kilometer, mass ~ earth like. Dark matter candidate?
> Row 7. An “octave”; probably non existant.

> Row 8. This value of A approximates that of the Bohr radius, a,=-8.276399

> Row 9. This value of A is precisely equal to that of the electron radius, ..
The value of the mass is anomalistic.

> Row 10. This is the Planck particle with m,A =h/c and m /A = ¢/G.

Page 2



PYTHKOAN,WPD NOVEMBER 5, 1999 ;- 9
A PYTHAGOREAN KOAN

In Zen monasteries chelas are given koans such as “What is the sound of one hand
clapping”. These are exercises in how to escape conventional and traditional patterns of
thinking, usually by positing absurdities or impossibilities. We can imagine that in the
Pythagorean Academy about 500 B.C.E. something similar was done to enable the apprentices to
attain greater freedom of thought. But more likely a Pythagorean koan, rather than being a logical
absurdity or impossibility, had to do with a geometrical visualization, for example:

Visualize a prolate spheroid. Allow this spheroid to spin rapidly about one of its minor axes.
What will be the resulting apparent “outer” figure? After reflecting the apprentice comes up
with: The outer figure would be an oblate spheroid having the diameter of the prolate spheroid’s
major axis. Very good. Now visualize an oblate spheroid and allow it to spin rapidly about one
of its major axes. What will be the apparent outer figure? The apprentice answers more quickly:
The result would be a sphere with its diameter equal to the oblate spheroid’s major axis. Good
again.

Now tell me what would be the apparent “inner” figure in each case?

Here the apprentice hesitates. What is the difference between outer and inner? Hmmm. The
outer represents the portion of space occupied by the spheroid part of the time. It flickers giving a
ghostlike semi-transparent image, like the spherical image in the spinning oblate spheroid case.
Now what is the inner? The inner is the portion of space occupied by the spheroid all of the
time. Its image appears to be solid and constant, not flickering like the outer image. OK, so what
is the inner image of the spinning prolate spheroid? It is a sphere having a diameter equal to the
minor or spin axis of the prolate spheroid. And what is the inner image of the spinning oblate
spheroid? It would have to be a prolate spheroid with major axis equal to the major or spin axis
of the oblate spheroid and with minor axis equal to the minor axis of the oblate spheroid.

Now, what can you say about the apparent images as related to the rates of spin? Well, off hand I
would say that the faster the spin rate the less flicker and the more solid the outer image would
appear. At some high rate of spin the inner image might even be obliterated. But it is hard to say
at what rate of spin the inner image would be most enhanced. Most likely at a much slower rate
than the optimum for the outer image.

You are leaving out an important factor in all of these perceptions. What are you ignoring? The
apprentice is perplexed, reviews the visualizations, then hits on: How about the existence of
some basic subjective frequency internal to the observer that leads to what is considered to be a
fast or slow spin rate?

Very good! Now explain the relation between perception and reality.
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I. CYCLES>1YEAR

ORBITAL ECCENTRICITY CYCLE

OBLIQUITY OF THE ECLIPTIC
23° 27 8.26"

PRECESSION OF EQUINOXES

ZERO CHECK CYCLE

4 PULSE

SOTHIC CYCLE
DIONYSIAN CYCLE
METONIC CYCLE

SAROS

November 28, 2010

EARTH CYCLES

93,408 ANOMOLYSTIC YEARS

40,032 YEAR INCLINATION CYCLE

25,725 YEAR CYCLE

4,668 YEARS
(LAST LINE UP 1437)

556 YEARS
(LAST 1996)

1,461 YEARS
532 YEARS
235 LUNATIONS = 19 YEARS

223 LUNATIONS = 18.03 YEARS
=6585.33 DAYS
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MYoTioR TIME AND DENSITY TIWE

Given a velocity and a distance, a travel time is derived by
travel time = distance/velocity
If a universal rate is postulated, such as the velocity of light,
c, then a general concept of time is derived as
light time = distance/c
These travel or motion times support a "linear" concept of time.
[Some motion times: light travel from sun = 499.012 seconds;
light travel time of the earth's orbit = 3135.383sec = 52 minutes]
Chek: ,f,»‘/w(d DT
A second concept of time derives from the dimensional analysis of
a function of density
time = k/ Ydensity
This kind of time supports a "cyclical” concept of time.
For the earth, for example, density time is approximately 84
ninutes, while motion time, 2nR/c is 0.137 seconds (~ frequency
of 7.3 hertz).

These two times become numerically equal for bodies on the
Schwarzschild Limit.

GM/c’R = 1
For bodies with GM/c’R < 1, which includes everything but black
holes, density time exceeds motion time.

The formulae relating motion and density time derived from
physical theory are as follows:
From the definition of density time

(1) 1 = .| ATPR?
GM

And the definition of motion time

(2) £ = 2TR
c

We derive

GM ! RY 47Gp

As stated above, when GM = c?R, the body is on the Schwarzschild
Limit and t = t. Or possibly the Schwarzschild Limit is the
result of a resonance condition resulting from t = t. If the
Schwarzschild Limit is the fundamental, we question how or
whether higher harmonics are manifested.
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DENSITY PERIOD No, G-PERIOD DAYS ERROR
5.517 84m+19.609s 222 13 +33.3s
5.513 84m+21.445s 973 57 -14.3s
5.521 84m+17.776s 205 12 +44.1s
5.51733 84m+19.3495 222 13 +0.009s

5,5 iny
The density value of 5.51733, differing very slightly from the
most probable value, gives an almost exact synchronization of the
day and G-period every 13 days. With this wvalue the maximum error
in the 13 day cycle occurs on the seventh day. So, the new twist
would be that synchronization does not occur on the seventh day
as it would if the G-period were exactly 84 minutes, but that the
times get most out of synch on the seventh day. God in creating
the world realized that the synch error was increasing every day,
and at the end of the sixth day He felt things were getting out
of hand, so decided to take the next day off. Things began to
improve on the eighth day, but we aren't sure what God did in the
second week.
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Another basic question is, how is density time properly
interpreted? It is not age, it is not related to motion or travel
time. It is cyclical, it manifests itself physically in satellite
orbital times and dynamical rotational limits. Is it a

synchronization signal? A temporal pulse that preserves coherence
of the body or system? Is it possibly a universal zeitgeber?
\7:5 /‘/' :z/\,( fml\mr'wmum /t\fv'«.l

ey \7/v”/y:¢/ /jlsffﬂf/br&"fv'\émf'/‘m?' ?
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STILL EVEN MORE ABOUT THE WEEK
see also 1991 #88; 1994 #7, #13, #15; 2000 #22

It was shown in Scrap 2000 #22 that the relation between the earth’s rotation period (the
24 hour solar day) and the earth’s Schuster period, T=27 v (R*)GM), could be taken as the
basis for the seven day week.'

Value in seconds’ | log,, value in seconds
T The earth’s Schuster Period 5060.24 3.704171
D The mean solar day 86400.00 4936514
H The Hydrogen Period 7239.07 3.859683

First note the ratio:
log T=10.750361 = 3/4
log D
Indicating that to within about 4 parts in 10" the ratio of the logarithms of the Schuster period to
the day is 3 to 4. In other words, (5060.24)" =17.168 and (86400)"*=17.145, A =0.023
or (5060.24)" = 655,668,714 x 10° and (86400)° = 644,972,544 x 10° ; whose ratio is 1.0166
or (5060,24)*” = 86875 and (86400)** = 5039.48; Hence T*=D®.

For seven days, assuming 120 Schuster periods, 7 x 86400 = 604800 seconds and

120 x 5060.24 = 607229 seconds, an error, A = 2429 seconds (48 m 40s) in seven days.
Possibly a basis for a seven day week.

However,

For thirteen days, assuming 222 Schuster periods, 13 x 86400 = 1123200 seconds and
222 x 5060.24 = 1123373.28 seconds, an error, A =173 seconds (2 m 53s) in 13 days.
A very good case for a thirteen day week.

And where has there been a thirteen day week? The ancient Maya used a basic thirteen day

period and from their vigesimal number system of base 20 derived a sacred “year” of 260 days. 1 72 ¢ . « (NT
We know that the Maya were good astronomers deriving a calendric year more accurate than our

present Gregorian year. So maybe they were also good geophysicists recognizing the relation

between the earth’s Schuster period and the earth’s solar rotation period. 3 -
bo P ny = 7N

l';’é’,;o/dy:}laaé

'"The Schuster period is determined by the mass M and radius R of the earth and is the
time period in which a satellite would circle a spherical earth at its surface were there no
atmosphere or other obstructions.

*These values are derived from a mean earth radius 6.371000 x 10° cm and
Earth mass of 5.9737 x 10%” g [Cox, Astrophysical Quantities 1999] ; and
G=6.674215x 10% cm*/g s* [Physics Today July 2000 p 21]
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EVEN MORE ON THE ORIGIN OF THE WEEK

Nine hundred million [ 9 x 10® ] years ago the length of the day was 18 hours. In
subsequent time the tides, largely lunar, have gradually slowed the turning rate of the earth
increasing the length of the day to the present 24 hours. To balance the resulting decrease in the
earth’s angular momentum, the angular momentum {MR?*/T} of the earth-moon system has
changed. This has resulted in the moon moving further away from the earth at a rate of about
3.82 £ 0.07 cm/year.! Observations [eg radar ranging of the lunar distance] and calculations [eg
records of times and places of ancient eclipses] indicate that the rate of increase in the length of
the day has been:

2.43 £+ 0.07 milliseconds per century from 390 BCE to 948 AD. and
- 1.40 + 0.04 milliseconds per century from 948 AD to 1800 AD >

In addition to the rotation period, [length of day], a second important period associated
with the earth is the so called “Schuster Period”, the time it would take for an artificial satellite
to orbit the earth at its surface if the earth were an airless smooth sphere. This period, T, is a
function of the mean density of the earth, p, and is given by, T=(G p)~*?*, where G is
Newton’s gravitational constant

Table I gives the values of the Schuster period in seconds corresponding to the best
estimates of the earth’s mean density in gm/cm’.

TABLE 1
DENSITY 5.513 5.517 +£0.004 5.521
PERIOD 84m + 21.439s 19.609+1.83s 17.779 s

Using the present most probable value for the earth's density of 5.517 gm/cm’, the
Schuster period is close to 84 minutes and 19.61 seconds. If we take this value as being constant
over millions of years, we ask at what dates in the past or in the future will the ratio of the
rotation period to the Schuster period have small rational values. That is, what are the smallest
integers Ny and Nj that are solutions of the Diophantine equation,

N, x (Length of Day) = N x (Schuster Period)

' K. R. Lang, ASTROPHYSICAL FORMULAE Vol II p. 80

2 Ibid p. 80



ENGLISH

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
- THURSDAY
FRIDAY
SATURDAY

RUSSIAN
BOCKPECEHBE

[IOHEJEJILHUK

BTOPHUK
CPEJIA
YETBEPT
NATHMLA
CYBBOTA

SAXON

SUN'S DAY
MOON'S DAY
TIW'S DAY
WODEN'S DAY
THOR'S DAY
FRIGG'S DAY
SETERNE'S DAY

JAPANESE

DAYS OF THE WEEK

GERMAN

SONNTAG
MONTAG
DIENSTAG
MITWOCH
DONNERSTAG
FREITAG
SAMSTAG

ITALIAN

LATIN

DIES SOLIS
DIES LUNAE
DIES MARTIS
DIES MERCURII
DIES JOVIS
DIES VENERIS
DIES SATURNI

GREEK

FRENCH

DIMANCHE
LUNDI
MARDI
MERCREDT
JEUDI
VENDREDI
SAMEDI

SPANISH

DOMINGO
LUNES
MARTES
MIERCOLES
JUEVES
VIERNES
SABADO
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MORE ABOUT THE WEEK

In TIMWEEK1.P51, (1991-#88), several properties of the Schuster
period were mentioned. To those reported there should be added
the very important property of equatorial fragmentation. The
Schuster period is the limiting rotational period for a rotating
earth not to disintegrate. For the earth to rotate with a period
shorter than 84 minutes, centrifugal force at the equator would
exceed @ gravitational pull,and the planet would become
unstable with mountains flying off into space. But the good news
is that we have a considerable "spin safety factor" against that
occurring. One rotation period is 1440 minutes, the Schuster
period is 84 minutes, giving a safety factor of

1440 _ 120

=171/7
84 7 /

This ratiofi of 120/7 is also the ratio of Schuster periods to days
in a week. Hence the earth’s spin safety factor is implicit in
the seven day week.

We have seen that the week is the smallest number of earth
rotation periods with an integral number of Schuster periods. But
also of interest are the '"beat periods" between the Schuster
cycle and the rotation cycle. Beat frequencies, f,, are given by
£, + £, = f,
where f, and f, are the Schuster and rotational frequencies
respectively. Substituting 5/7 hours and 1/24 hours, we get beat
periods of 1P 29™ 12° and 1" 19® 22° . These values are very
close to 3/2 hour and 4/3 hour, which divide the 24 hour day into
16 and 18 intervals respectively. It seems that again the
ancients were in touch with something we have lost. The division
of daylight time into 9 "hours" was an ancient practice. (Still
reflected in the Prime, Terce, Sext, None of the monastic day)
Did this division of time into nine instead of twelve periods
come from subtle or overt experience of ﬁﬁé Schuster beat
periods?
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DIMENSIONAL TIMES

On the basis of dimensional considerations there are four species
of time: Mot/ om & )7
t Motion or Radar time bra ﬁﬂ%v%/
t=228  t2AR) =z B
c &
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3 One L&WWQ”WM%Wm
z .
T = 2nR L ’t3f¢0 2 j 2/b¢§?
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Mc cy}/z/l’ fﬂf’/’
% K Gravitational time éﬁ'@
/“\‘j ’z’/') - hR f)*, ’__'\—%f}/\/]
. S b K- 5 g L= fle,m)
A C
Complementary to each of these four times are four energies given
by (action/time) in each case. (h has the dimensions [ML?/T] of
action)
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TEMPORAL DICHOTOMIES

PHYSICAL TIMES
MOTION
ARISTOTELEAN

LIGHT TIME
FAST
INFORMATION
COMMUNICATION
SPECTRAL LINES
LEPTON TIME

BIOLOGICAL TIMES
NEURCN TIMES
CIRCADIAN RHYTHMS
SUBJECTIVE TIME

DENSITY
KEPLERIAN

2nd T « R?

3rd T? « R?
GRAVITATIONAL TIME
SLOW
MATTER/i WER G ¥
TRANSPORTATION
G-ATOMIC
BARYON TIME

MUSCULAR TIMES
MONTHLY RHYTHMS
OBJECTIVE TIME

CULTURAL TIMES

CHRONOS KATIROS
SECULAR LITURGICAL
SOLAR LUNAR
IMPERFECTIVE PERFECTIVE

CONCEPTUAL TIMES

LINEAR CYCLICAL
EVOLUTIONARY REPETITIVE
INOVATIVE Sp - ITERATIVE
HISTORICAL ARCHETYPAL
TEMPORAL PRIMORDEAL
FREQUENCY PERIOD
CONTINUOUS DISCRETE
OPEN CLOSED
JEQVANTIAL ETERN, Ty
Pricy METER

Creativity must have two frames of reference.--Craik

Information must have a faster rate than matter.

Is Kairos associated with density time? Both are cyclical.
Is Chronos associated with motion time? Both are linear.




BASIC TIMES AND FREQUENCIES

ITEM FORMULA | LOG,, VALUE SECONDS HERTZ
electron 21/ (r/Gm,) | -0.918814 0.120555 8.294954
baryon 2/ (r,/Gm)) | -2.550769 0.002813 355.442210
hydrogen 21/ (a,%/Gm,) | +3.859735 7239.9405 0.0001381
earth Schuster | 2V (R/GM,) [ +3.704223 5060.8446 0.0001976
earth Schumann | 27tR /c -0.874433 10.133526 7.489158
earth Schwarz.. | GM/c’ -10.829925 1.479364 x 10" | 6.759662 x 10"
orbit Schumann | 270(A.U.)/c +3.496286 3135.3498 0.0003189
earth rotation © +4.9365137 86400 1.157407 x 107
earth rotation 3¢ +4.9353263 86164.09054 - | 1.160576 x 10°
earth geosync 2R /c -0.052906 0.885307 1.12955
neutron star apS t, -2.785412 0.001639 610.1154
sun Schuster 21V (R/GM,) | +4.000163 10003.7539 0.00009996
sun Schumann 2TR/c +1.163661 14.576760 0.068602
Sun Schwarz.. | GM/c? -5.307523 0.000004926 203012.6031
Univ Schuster | v (R,*/GM,) +17.456065 9.056 gyr *

Univ Schumann | R/c +17.456065 «
Univ Schwarz... | GM,/c® +17.456065 «

* This is the Schumann period at the distance R, = 42241 km (26,247 miles) for synchronous
satellites in equatorial orbits.

Notes:

(earth Schuster)’ = (earth rotation ©)°,

14.817 =14.810

(earth Schuster)/(hydrogen) = 0.699017 or 7/10

(log day) = (log hydrogen) x ( log 19)
(log hydrogen) = (log earth Schuster) x (log 11) 3.860 = 3.858
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4.9365=4.9357

A =0.007
A =0.001

A =0.0008
A =0.002
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