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NOTE29.WPD November 9, 2004 

BASIC TIMES AND FREQUENCIES 
[UPDATE BASEFREQ.WPD, 2002-11-27, # 62] 

ITEM FORMULA LOG 10 Seconds D-H-M-S HERTZ 

electron Schuster 2rc..f(r//Gme) -0.918814 0.120555 s 8.294954 

baryon Schuster 2rc..f(r//GmP) -2.550769 0.002813 s 355.442210 

hydrogen Schuster 2rc..f(a//G~) +3.859735 2h Om 39.94 s 0.0001381 

earth Schuster 2rc..f (R//GMe) +3.704223 84m 20.84 s 0.0001976 

earth Schumann 2nRjc -0.874433 0.133526 s 7.489158 

earth Schwarzschild GMjc3 -10.829925 1.479364 X 10"11 
S 6.759662 X 1010 

earth Schwarz2 2GMjc3 -10.528896 2.958721 X 10"11 
S 3.379839 X 1010 

orbit Schumann 2rc(A.U.)/c +3.496286 52m 35.35 s 0.0003189 

earth rotation 0 +4.9365137 86400 s 1.157407 X 10-5 

earth rotation * +4.9353263 23h 56m 4.09 s 1.160576 X 10-5 

earth geosync 
. 

2nR/c -0.052906 0.885307 s 1.12955 

neutron star aµS tP -2.785412 0.001639 s 610.1154 

sun Schuster 2rc..f (R//GM,) +4.000163 2h 46m 43.75 s 0.00009996 

sun Schumann 2rcR/c +1.163661 14.576760 s 0.068602 

Sun Schwarzschild GM/c3 -5.307523 0.000004928026 203012.6031 

Sun Schwarz2 2GMjc3 -5.006494 0.000009851583 101506.5343 

Univ Schuster ..f(R,//GM
0

) +17.456065 l 9.056346 gyr 

Univ Schumann R/c +17.456065 V' " 

Univ Schwarzschild GM/c3 +17.456065 ~ " 
' 

½Univ 4.428173 gyr 

3/2 Univ 13.584519 gyr 

* This is the Schumann period at the distance R
8
, = 42241 km (26,247 miles) for synchronous satellites in equatorial 

orbits. 
Notes: 
(earth Schuster)4 = (earth rotation 0)3

, 14.817 = 14.810 
( earth Schuster)/(hydrogen) = 0.699017 or 7 /10 
(log day) = (log hydrogen) x ( log 19) 4.9365 = 4.9357 

A =0.007 
A= 0.001 

A= 0.0008 
A= 0.002 (log hydrogen)= (log earth Schuster) x (log 11) 3.860 = 3.858 
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TIMWEEK1.P51 DISK:TIME August 7, 1991 
cf , /~cu~ ~7(,## 1f; .Ji.f 

A PHYSICAL BASIS FOR THE WEEK fqFl/f; #:Y3 
f"fC/(51 ft ~-, 

Our basic units of time, the day, the month, and the year, 
have their obvious origins in the rotation of the earth, the 
revolution of the moon, and the revolution of the earth. Our 
smaller units of time, the hour, minute, and second are derived 
from numerically convenient but rather arbitrary divisions of the 
day. The origin of the week as a unit of time, however, has always 
been a bit of a puzzle. It has been suggested that it originated as 
being a quarter of a month, but the month of lunar phases is not 28 
days, but about 2 9. 5 days, which over time renders the week a 
rather poor unit for keeping track of the phases of the moon. 

The week, however, has a non-astronomical origin in the 
traditions of the Jewish people. God created the world in six days 
and rested on the seventh. God then ordained the Sabbath and thus 
established the week as a unit of sacred time. In more modern times 
this tradition seemed to be arbitrary to some would be reformers. 
Experiments with weeks of different lengths were attempted during 
the French revolution and later during the Russian revolution. 
Weeks of as long as 10 days and as short as 4 days were tried, but 
the results were negative. There appears to be a basic cycle of 
seven days that conforms with the human disposition. The seven day 
week of ancient tradition, even though without astronomical origin, 
seems not to be arbitrary. ;,:,J t"vf-c,h,, 

.L f ,·,c'-<'_1 _q- :5 .• r 
v'V f :. f -v 

With such negative experimental results, the question arises 
whether there might indeed be some physical basis for a seven day 
cycle after all. Since no heavenly body is known that can provide 
the basis for this period, perhaps we should look to the earth 
itself for its origins. What periodicities are associated with the 
earth besides its rotation and revolution periods? Are there other 
basic terrestrial periods? '{]One such basic period acquired 
prominence when artificial satellites were first put into orbit. 
This is the so-called 'Schuster Period' -- the period of a zero­
altitude satellite. It is the time required for a satellite to 
orbit the earth at the earth's surface, which is determined by the 
size and mass of the earth. 

The Schuster period is a limiting period. It is the 
theoretical shortest possible time for any satellite operating 
solely under the influence of natural forces to orbit the earth. 
Its value is a few seconds over 84 minutes. But because of the 
earth's atmosphere, no practical satellite could have that short a 
period. Practical satellites must operate above the bulk of the 
atmosphere and the greater the altitude the longer the orbital 
period. The length of orbital period increases from 84 minutes at 
the earth's surface to 24 hours at the 'synchronous distance' of 
about 22,000 miles, where most communications satellites are 
located, to roughly 30 days at the distance of the moon. 
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Another interesting property of the Schuster period is that if 
there were a hole passing through the center of the earth and there 
were no atmosphere to create drag, a weight dropped in the hole 
would take exactly half a. Schuster period to emerge with zero 
velocity at the antipode. In the absence of any frictional drag, 
the weight would oscillate back and forth from antipode to antipode 
in 84 minutes. In fact the hole would not even have to pass through 
the center of the earth. With no friction a hole tunneled along any 
chord through the earth would support the same period of 
oscillation-84 minutes. It is thus seen that this value of 84 
minutes is intimately associated with the earth. It is indeed, 
along with the day and year, a basic terrestrial period. 

4 ,;ti,,·' 5· (,, & '6 ~) J::, ·'-'c 

The precise value of the earth's Schuster period is 5042.519 0-ff,,-,.J.r, 
seconds or 84m 2.5s which is the same as 1hr 24m 2.5s. Now comes 
another interesting property of the Schuster period. There are ,1 c:, 'v'-t, 

exactly 120 Schuster periods in one week. The error being less than '.i')-t f'./_ 
one part in 2000. This tells us that the earth's. Schuster period ~ 
and the earth's solar rotation period are integfally,connected and 
are in phase at one instant every seven days. Thus the week does 
have a basis in nature. It is the minimum time required for the 
rotation period and the Schuster period to return to the same 
phase. 

When I worked for an aerospace company we had an allotted 
lunch hour of 42 minutes. I presumed that management was displaying 
their knowledge of orbital mechanics to impress us we lived in the 
space age, but curiously 42 minutes seemed to be just the right 
amount of time for an on site lunch. I have also noticed that in 
several areas the post office allows 21 minutes parking. Where does 
the post office get this figure? The time for a weight to fall to 
the center of the earth doesn't seem connected to the speed of 
postal service, but it has worked out fairly well (except during 
the Christmas season). However, the interesting questions are how 
such an invisible period came to be incorporated into the ancient 
tradition of a non-technical people; and what is there about the 
size and mass of the earth that humans seem to sense without 
instruments and theories? 

But there is also a caveat. There are many calendar reform 
plans in the wings to simplify the fitting together of months, 
quarters, and the year. Most of these interject 'free days' two or 
more times a year, days that would not belong to any of the seven 
days of the week. Such reforms would destroy the millennia old 
record of the phase relation between the rotation and gravitation 
of the earth as mapped onto the days of the week. The week must 
remain inviolate in accord with how it was established and 
preserved for thousands of years in the Jewish tradition and later 
passed on as a heritage for all mankind . 
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TIMWEEK2.W52 DISK:TIME January 31, 1994 

MORE ABOUT THE WEEK 

In TIMWEEK1.P51, {1991-#88), several properties of the Schuster 
period were mentioned. To those reported there should be added 
the very important property of equatorial fragmentation. The 
Schuster period is the limiting rotational period for a rotating 
earth not to disintegrate. For the earth to rotate with a period 
shorter th~n 84 minutes, centrifugal force at the equator would 
exceed~ gravitational pull1 and the planet would become 
unstable with mountains flying off into space. But the good news 
is that we have a considerable "spin safety factor" against that 
occurring. One rotation period is 1440 minutes, the Schuster 
period is 84 minutes, giving a safety factor of 

1440 = 120 =171/7- 171/7 
84 7 

This ratiol of 120/7 is also the ratio of Schuster periods to da~ 
in a week. Hence the earth's spin safety factor is implicit in 
the seven day week. 

We have seen that the week is the smallest number of earth 
rotation periods with an integral number of Schuster periods. But 
also of interest are the "beat periods" between the Schuster 
cycle and the rotation cycle. Beat frequencies, fb, are given by 

fs ± fr = fb 
where f 5 and fr are the Schuster and rotational frequencies 
respectively. Substituting 5/7 hours and 1/24 hours, we get beat 
periods of lh 29m 12 5 and lh 19m 22s . These values are very 
close to 3/2 hour and 4/3 hour, which divide the 24 hour day into 
16 and 18 intervals respectively. It seems that again the 
ancients were in touch with something we have lost. The division 
of daylight time into 9 "hours" was an ancient practice. (Still 
reflected in the Prime, Terce, Sext, None of the monastic day) 
Did this division of time into nine instead of twelve periods 
come from subtle or overt experience of p)re Schuster beat 
periods? 
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ROTGRAV.W52 DISK:TIME February 17, 1994 

SYNCHRONIZATION Of THE EAR.TH'S ROTATIONAL 
AND GR.A \IIT A TIONAL PERIODS er ~~iJ/ -i {5 

#IT 
t:o·yr 

Four basic periods are associated with the earth: The revolution 
period of one year, the lunation period of one month, the 
rotation period of one day, and the gravitational (or 
Schuster)period of 84 minutes(plus a few seconds} Since these 
various periods have no simple integral multiples, there is the 
problem of commensuration, or finding the simplest ratios of 
their values. For example, since ancient times solutions to the 
problem of when the full moon will occur on the same calendric 
date have been sought. One answer was the Metonic Cycle of 235 
lunations = 19 years. (235 synodical months= 6939.6882 days, 
while 19 years= 6939.6018 days, the difference being 2h 4m 24s) 
In the western hemisphere, the Mayans found that 81 moons= 2392 
days before the moon appeared in the sky at the same phase at the 
same time. 

The same problem arises in determining the synchronization of the 
mean solar day with the earth's G-period. To a first 
approximation the G-period of the earth is 84 minutes. This value 
synchronizes exactly with the 24 hour rotation period of the 
earth every seven days. That is 120 x 8~ minutes= 7 x 24 x 60 
minutes= 10080 minutes. Is it possible that this first 
approximation to G-period solar day synchronization could be the 
basis of the week? The question arising here is in what manner 
did ancient humans sense the G-period. 

But the value of the G-period is not exactly 84 minutes. Using 
the present most probable value for the earth's density of 5.517 
± 0.004 gm/cm3

, the G-period is about 84 minutes and 19.61 ± 1.83 
seconds. This means that there is not precise synchronization 
every seven days, but there is an error of approximately 120 x 20 
= 2400 seconds (40 minutes)each week. This value is approximately 
half a G-period, so we would expect a better approximation to be 
a fortnight. Actually a minimum synchronization error of 33.4 
seconds occurs in 13 days. But this error is accumulative so an 
exact synchronization, if any, will occur only at some much 
longer period. 

To find synchronization periods it is necessary to solve the 
Diophantine equation 

N1 x CYCLE1 = N2 x CYCLE2 
where N1 and N2 are integers. For the choice of cycles, G-period 
and day, we get the following table: 
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DENSITY PERIOD No, G-PERIOD DAYS ERROR 

5.517 84m+l9.609s 222 13 +33.3s 

5.513 84m+21.445s 973 57 -14.3s 

5.521 84m+l7.776s 205 12 +44.ls 

5.51733 84m+l9.3495 222 13 +0.009s 

S",:Jilf,B' S-1-/f'IYl.t"/'if,r/-'5''2 L22,D'-v'i 2-.~3-'ll< J 

The density value of 5.51733, differing very slightly from the 
most probable value, gives an almost exact synchronization of the 
day and G-period every 13 days. With this value the maximum error 
in the 13 day cycle occurs on the seventh day. So, the new twist 
would be that synchronization does not occur on the seventh day 
as it would if the G-period were exactly 84 minutes, but that the 
times get most out of synch on the seventh day. God in creating 
the world realized that the synch error was increasing every day, 
and at the end of the sixth day He felt things were getting out 
of hand, so decided to take the next day off. Things began to 
improve on the eighth day, but we aren't sure what God did in the 
second week . 
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SUNDAY 
MONDAY 
TUESDAY 
WEDNESDAY 
THURSDAY 
FRIDAY 
SATURDAY 

RUSSIAN 

BOCKPECEHbE 
no HE,UEJlbHltlK 
BTOPHltlK 
CPE,UA 
l!ETBEPr 
mITHltlUA 
CYBBOTA 

POLISH 

NIEDZIELA 
PONIEDZIALEK 
WTOREK 
SRODA 
CZWARTEK 
PIATEK 
SOBOTA 

SAXON 

SUN'S DAY 
MOON'S DAY 
TIW'S DAY 
WODEN' S DAY 
THOR'S DAY 
FRIGG'S DAY 
SETERNE'S DAY 

GREEK 

KYPIAKH 
aEYTEPA 
TPITH 
TETAPTH 
IIEMIITH 
IIAPAl:KEYH 
l:ABBATOM 

Rel: SltOIIN 
S'MYNE£ 
s f!L. 1::-1; J fl/;:-/: 

R.ENVb'c~F 
k li.AHNi:i'f'SilJ:[ 
'[; !ii't: S' fl F £ 
Sfll}H i}l'!H T 
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!DAYS Of THE WEEK 

GERMAN LATIN FRENCH SPANISH 

SONNTAG DIES SOLIS DIMANCHE DOMINGO 
MONTAG DIES LUNAE LUNDI LUNES 
DIENSTAG DIES MARTIS MARDI MARTES 
MITWOCH DIES MERCURII MERCREDI MIERCOLES 
DONNERSTAG DIES JOVIS JEUDI JUEVES 
FREITAG DIES VENERIS VENDREDI VIERNES 
SAMSTAG DIES SATURNI SAMEDI SABADO 

SWEDISH ITALIAN JAPANESE JAPANESE 

SONDAG DOMINICA NICHIYOUBI El MANDAG LUNEDI GETSUYOUBI A TISDAG MARTED! KAYOUBI 1< ONSDAG MERCOLEDI SUIYOUBI tK 
TORSDAG GIOVEDI MOKUYOUBI 7K 
FREDAG VENERDI KINYOUBI j:-
LORDAG SABATO DOYOUBI ± 
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MOREWEEK.WPD APRIL 10, 2000 
see also 1991 #88; 1994 #7, #13, #15 

STILL MORE ABOUT THE WEEK 

It has been noted that in looking for a natural cycle related to the week, that it is the earth 
itself, not the moon or some other planet, that provides the cycle. Indeed, it is the relation 
between the day and the earth's Schuster period that gives us a cyclical basis for the week. The 
Schuster period is related to the mass and size of the earth and is the time period in which a 
satellite would circle the earth at its surface were there no atmosphere or other obstructions. It is 
the limiting value of time that Kepler's third law would assume for a minimum orbital radius. In 
this case the minimum orbital radius being the mean radius of the earth itself. The Schuster time 
T is given by, 

)R3 
T= 2n~GM 

where R is the earth's mean radius, G is Newton's constant, and Mis the mass of the earth. 

Value in seconds log10 value in 
seconds 

T The earth's Schuster Period 5042.51897 3.7026475 

s The earth's sidereal day 86164.09054 4.9353264 

D The mean solar day 86400. 4.9365137 

First note the ratios: 7 1-J ::::.. D 
3 

log T = 0.7502326 log T = 0.7500531 
~gS ~gD 

Indicating that to within about 5 parts in 105 the ratio of the logarithms of the Schuster period to 
the day is 3 to 4. An example that many of the astronomical period or frequency ratios are 
between log values, unlike ratios of frequencies in music. T _ - -

D 
Next note the following values: 
The first solution to the diaphantine equation M x T = N x D gives M = 120 and N = 7. 

D/T = 17.134294, 120/7 = 17.142857, with o = 0.009 or 9 parts in 103 

Seven days is equal to 604,800 seconds, 120 Schuster periods is equal to 605,102.27 seconds, 
the difference being 302 seconds or just over five minutes. 

302/604,800 = 0.0004993 or 5 parts in 104 

It is accordingly suggested, without a mythic explanation regarding the origin of the 
week, that somehow humans tuned in on this basic relation between these two fundamental 
natural cycles . 

/2..0 

7 
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COSCUR2A.WPD December 9, 2007 

COSMIC CURIOSITIES PART Ill 
THREE TERRESTRIAL CYCLES 

EARTH Value in seconds 10910 value in seconds 

T The Schuster Period 5058.40 3.704013 

D The mean solar day 86400.00 4.936514 

s The mean sidereal day 86163.9 4.935325 
Note that log10(T)/log10(D) = 0. 750330 which to about 3 parts in 104 is equal to 3/4. 

log10 T4 = 14.816 log10 D
3 = 14.810 

log10(T)/log10(S) = 0.750510 
The Schuster period is determined by the mass M and radius R of the earth and is the time period 
in which a satellite would circle a spherical earth at its surface were there no atmosphere or other 
obstructions. T = 21t ..f (R3 /GM) 
The mean solar day is the rotation period of the earth with respect to the sun. 
The mean sidereal day is the rotation period of the earth with respect to fixed stars . 

The above values are derived from a mean earth radius 6.371000 x 108 cm and Earth mass of 
5.9737 x 1027 g [Cox, Astrophysical Quantities 1999] 
log10R = 8.804 207 605 log10M = 27.776 243 408 log10G = -7.175 296 

SUN Value in seconds log10 value in seconds 

T The Schuster Period 10003.754 4.000163 

s The rotation period 2192832 6.343335 

compare values with MOR EWE EK. WPD APR 10,2000 #22 
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MAYAN.WPD 

STILL EVEN MORE ABOUT THE WEEK 
see also 1991 #88; 1994 #7, #13, #15; 2000 #22 

JULY 29, 2000 

It was shown in Scrap 2000 #22 that the relation between the earth's rotation period (the 
24 hour solar day) and the earth's Schuster period, T=27t f (R3/GM), could be taken as the 
b . D th d k 1 as1s or e seven ay wee . 

Value in seconds2 

T The earth's Schuster Period 5060.24 

D The mean solar day 86400.00 

H The Hydrogen Period 7239.07 

First note the ratio: 
logT=0.750361 ~ 3/4 
logD 

log10 value in seconds 

3.704171 

4.936514 

3.859683 

Indicating that to within about 4 parts in 104 the ratio of the logarithms of the Schuster period to 
the day is 3 to 4. In other words, (5060.24) 113 = 17.168 and (86400) 114 = 17.145, b. = 0.023 
or (5060.24)4 = 655,668,714 x 106 and (86400)3 = 644,972,544 x 106

; whose ratio is 1.0166 
or (5060,24)413 = 86875 and (86400)314 = 5039.48; Hence T4 ~ D3 

• 

For seven days, assuming 120 Schuster periods, 7 x 86400 = 604800 seconds and 
120 x 5060.24 = 607229 seconds, an error, b. = 2429 seconds (48 m 40s) in seven days. 
Possibly a basis for a seven day week. 
However, 
For thirteen days, assuming 222 Schuster periods, 13 x 86400 = 1123200 seconds and 
222 x 5060.24 = 1123373.28 seconds, an error, b. = 173 seconds (2 m 53s) in 13 days. 
A very good case for a thirteen day week. 

And where has there been a thirteen day week? The ancient Maya used a basic thirteen day 
period and from their vigesimal number system of base 20 derived a sacred "year" of 260 days. LT 2, 0 1- i" 1 IV 1 
We know that the Maya were good astronomers deriving a calendric year more accurate than our 
present Gregorian year. So maybe they were also good geophysicists recognizing the relation 
between the earth's Schuster period and the earth's solar rotation period. 

1The Schuster period is determined by the mass M and radius R of the earth and is the 
time period in which a satellite would circle a spherical earth at its surface were there no 
atmosphere or other obstructions. 

2These values are derived from a mean earth radius 6.371000 x 108 cm and 
Earth mass of 5.9737 x 1027 g [Cox, Astrophysical Quantities 1999] ; and 
G = 6.674215 x 10-3 cm3/g s2 [Physics Today July 2000 p 21] 
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WEEKPLUS.WPD 2002-03-18 

EVEN MORE ON THE ORIGIN OF THE WEEK 

Nine hundred million [ 9 x 108
] years ago the length of the day was 18 hours. In 

subsequent time the tides, largely lunar, have gradually slowed the turning rate of the earth 
increasing the length of the day to the present 24 hours. To balance the resulting decrease in the 
earth's angular momentum, the angular momentum {MR.2/T} of the earth-moon system has 
changed. This has resulted in the moon moving further away from the earth at a rate of about 
3.82 ± 0.07 cm/year. 1 Observations [eg radar ranging of the lunar distance] and calculations [eg 
records of times and places of ancient eclipses] indicate that the rate of increase in the length of 
the day has been: 

2.43 ± 0.07 milliseconds per century from 390 BCE to 948 AD. and 
1 .40 ± 0.04 milliseconds per century from 948 AD to 1800 AD 2 

In addition to the rotation period, [length of day], a second important period associated 
with the earth is the so called "Schuster Period", the time it would take for an artificial satellite 
to orbit the earth at its surface if the earth were an airless smooth sphere. This period, 't', is a 
function of the mean density of the earth, p, and is given by, 't' = (G p)-112

, where G is 
Newton's gravitational constant 

Table I gives the values of the Schuster period in seconds corresponding to the best 
estimates of the earth's mean density in gm/cm3

• 

TABLE I 

DENSITY 5.513 5.517 ± 0.004 5.521 

PERIOD 84m+ 21.439 s 19.609 ± 1.83 s 17.779 s 

Using the present most probable value for the earth's density of 5.517 gm/cm3
, the 

Schuster period is close to 84 minutes and 19.61 seconds. Ifwe take this value as being constant 
over millions of years, we ask at what dates in the past or in the future will the ratio of the 
rotation period to the Schuster period have small rational values. That is, what are the smallest 
integers ND and N8 that are solutions of the Diophantine equation, 

ND x (Length of Day)= N8 x (Schuster Period) 

1 K. R. Lang, ASTROPHYSICAL FORMULAE Vol II p. 80 

2 Ibid p. 80 
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MOONMAYA.WPD June 15, 2004 

SATELLITES 
THE MOON AND THE MAY ANS 

One of the puzzling questions about the Mayan calendar and their system of time has 
been the origin of their 260 day "TUN". This period does not seem to --­
basis, as does their "HAAB" which corresponds to our year. But tun was as important as haab in 
the Mayan reckoning of time. 

It has been shown in a previous scrap [2000 #43] that the tun could have been the product 
of their vigesimal, base 20, number system and their selection of 13 days for the week. The 
origin of the latter could have been the close resonance between the earth's Schuster period1 and 
its rotation period. It was noted that the error between seven rotation periods of 86,400 seconds 
and 120 Schuster periods of 5059.61 seconds is 2353 seconds. While the error between thirteen 
rotation periods and 222 Schuster periods is only 33 seconds. This would make a good case for 
a 13 day week instead of a 7 day week, provided that the Schuster period is the geophysical 
cycle basic to the week. 

Comparisons for the tun: 
Twenty 13 day weeks = 260 days; the error to 4440 Schuster periods is 668 seconds. 
Thirty seven 7 day weeks = 259 days: error to 4423 Schuster periods is 1055 seconds. 
[In both cases the Schuster values exceed the rotational values] 

But there is another possibility for the origin of the tun. 

The lunar sidereal period is 27.3217 days. Nineteen of these periods equals 519.1123 days. 
This is an error of 0.8877 days in two tuns or less than a half day per tun. 

So if we wish to pick a number of days that closely represents several cycles. 
From the Schuster cycle and a 7 day week 259 days 
From the lunar sidereal cycle 259.56 days 
From the Schuster cycle and 13 day week 260 days 

The tun is a useful choice. 

1 The Schuster Period, t, is the limiting value in Kepler's third law, t2 = d3/GM, when 
the distance, d, is taken as the distance from the earth's center to its surface and where Mis the 
mass of the earth. It is the time a satellite would take to circle the earth at the surface if the earth 
were a smooth sphere with no atmosphere. Or if there were a hole through the earth, it is the time 
an object would require to make a round trip through the hole. 
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Learn how to obtain essential 
nutrients from healing quality 
foods. How to balance your meals 
and transform your moods. How 
diet is related to disease, and How 
the macrobiotic approach extends 
beyond the individual to include 
benefits for the social and natural 
order. 
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Learn how to obtain essential nutrients from 
healing quality foods. How to balance your 
meals and transform your moods. How diet 
is related to disease, and How the 
macrobiotic approach extends beyond the 
individual to include benefits for the social 
and natural order. 
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• SCHUSTER PERIOD/DAY RESONANCES 
MOST PROBABLE 84 MINUTE MINIMUM VALUE MAXIMUM VALUE 
5059.5 SEC 5040 SEC 5042.5 SEC 5069.7 SEC 

1 17.07679 17.07679 17.14286 17.14286 17.13436 17.13436 17.04243 17.04243 
2 34.15357 34.28571 34.26872 34.08486 
3 51.23036 51.42857 51.40307 51.12729 
4 68.30714 68.57143 68.53743 68.16971 
5 85.38393 85.71429 85.67179 85.21214 
6 102.4607 102.8571 102.8061 102.2546 
7 119.5375 120 ,06'1:; 119.9405 119.297 
8 136.6143 137.1429 137.0749 136.3394 
9 153.6911 154.2857 154.2092 153.3819 

10 170.7679 171.4286 171.3436 170.4243 
11 187.8446 188.5714 188.4779 187.4667 
12 204.9214 205.7143 205.6123 204.5091 
13 --4 221.9982 222.8571 222.7467 221.5516 
14 239.075 240 , {19 0 239.881 238.594 
15 256.1518 257.1429 257.0154 255.6364 
16 273.2286 274.2857 274.1497 272.6789 
17 290.3054 291.4286 291.2841 289.7213 
18 307.3821 308.5714 308.4184 306.7637 
19 324.4589 325.7143 325.5528 323.8061 
20 341.5357 342.8571 342.6872 340.8486 

• 21 358.6125 360 359.8215 357.891 
22 375.6893 377.1429 376.9559 374.9334 
23 392.7661 394.2857 394.0902 • ()2._ Lf. I 391.9759 
24 409.8429 411.4286 411.2246 , b(S-3 409.0183 
25 426.9196 428.5714 428.3589 426.0607 

,Du J 0 26 443.9964 445.7143 445.4933 443.1031 
27 461.0732 462.8571 462.6277 460.1456 
28 478.15 480 479.762 477.188 
29 495.2268 497.1429 496.8964 494.2304 
30 512.3036 514.2857 514.0307 511.2729 
31 529.3804 531.4286 531.1651 528.3153 
32 546.4572 548.5714 548.2995 545.3577 
33 563.5339 565.7143 565.4338 562.4001 
34 580.6107 582.8571 582.5682 579.4426 
35 597.6875 600 599.7025 596.485 
36 614.7643 617.1429 616.8369 613.5274 
37 631.8411 634.2857 633.9712 630.5699 
38 648.9179 651.4286 651.1056 647.6123 
39 665.9947 668.5714 668.24 664.6547 
40 683.0714 685.7143 685.3743 681.6971 
41 700.1482 702.8571 702.5087 698.7396 
42 717.225 720 719.643 715.782 
43 734.3018 737.1429 736.7774 732.8244 
44 751.3786 753.9118 749.8669 
45 771.0461 766.9093 
46 788.1805 783.9517 • 47 805.3148 ,(jOf'i 800.9941 
48 822.4492 818.0366 
49 839.5835 835.079 
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24 0.041667 
25 0.04 
26 0.038462 

• 27 0.037037 
28 0.035714 
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17.14286 

17.125 
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17.04348 
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NEWCHON3.WP6 March 11, 1996 Rev, April 11, 1996 

EXPLORING CHON 

Aristotle held that time was an inference of motion. But there 
appears to be a species of time that is not derived from motion. 
This time is associated with the density of matter and manifests 
as a zeitgeber that governs local clock rates. Its period is 
inversely proportional to the square root of the mass density. A 
familiar example is the Schuster Period, a bound on the period of 
an earth orbiting satellite when only gravitational and inertial 
forces are acting. This period of approximately 84 minutes is 
numerically related to the mean density of the earth and to the 
universal gravitational constant,G. In general the lower limit to 
orbiting periods is given by, 

(1) 

Where Risa size parameter (radius) and Mis a mass parameter. 
It is seen that equation (1) is a bounding case of Kepler's third 
law. For a spherical body, this boundary time, t, in terms of 
the mean density p, is given by, 

( 2) 
t=~ ~~ 

Equations (1) and (2) are usually applied to astronomical bodies 
and since gravity is a force weaker than other forces by some 40 
orders of magnitude, it seems quite inappropriate that these 
equations contain anything of significance for bodies where 
gravity plays no detectable role, in particular for micro objects 
such as atoms and sub-atomic particles. There is, however, 
nothing known that precludes the universal applicability of these 
equations. At first thought, when applied to objects on the 
atomic level, it would seem the results would be insignificantly 
small. Remembering, though, that we are dealing with time, not 
size or force, this is not the case. Coulomb times are of the 
order of 10-16 seconds. If the ratio of force strengths between 
coulomb and gravitatonal forces is of the order of 1040 then the 
ratio of gravitational times to coulomb times must be of the 
order of 1020 leading to atomic graviational times of the order 
of 104 seconds. 

As an example, take for size the Bohr radius, a 0 , and for mass 
the proton mass, mp. The time tH, turns out to be almost exactly 
2 hours! Explicitly, 
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(3) = 7239. 94sec = 2hours 40s econds 

Another example is the Schuster time for an electron. Using re, 
the electron radius and me, the electron mass, the Schuster 
period is given by, 

(4) T =2rr ~ r,' 
e Gm 

e 

= 0 .12lsec 

which is about one-eighth of a second, again in the time frame of 
daily experience as this is an important time interval for human 
visual perceptions. 

A third value of possible physiological interest is the time 
given by the Schuster period of the proton: 

(S) TP = 2rr~ = 2. 813 millisec 

The time values given in equations 3), 4), and 5), since they are 
present in every atom or organic molecule, may play the role of 
zeitgebers in physiological processes. 

Noting the near coincidence of the hydrogen gravitational time of 
two hours with twice the culturally employed time unit derived 
from the earth's rotation period, we are led to surmise that 
micro gravitational times may play some hitherto unsuspected 
role. On the basis of the result for atomic hydrogen it seems 
relevant to go further and inquire how equation(l) might be 
applied to other atoms. 

The correct value to be used for mass in equation(l) is likely to 
be a function of the atomic weight of the atom. But the value to 
be used for the size (radius) in equation(l) is uncertain as we 
are dealing with gravitational rather than coulomb effects. 

One approach is to note that the relation between density and 
mass for some larger bodies, planets, stars, etc., is that the 
density is roughly proportional to the reciprocal of the mass, 

p °' M-1. 
Alternate Assumption 1] We provisionally assume the same for 
atoms, that the density varies inversely with the mass. This is 
equivalent to M2 

ex: R3 
• Substituting (KGM) 2 for R3 in 

equation(l), we get, 

/1-/lo 
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"( = 2II~ (KGM) 2 = 2IIK312fc;M 
GM 

That is, the period Tis approximately proportional to the 
square root of the mass. This leads to, 

(7) 
"( = 2nK

312{GM = 

"[ H 2nK
312 ✓GmP 

where A is the atomic weight. 
Using this result, TA= TH~A, we can construct the following 
table: 

ELEMENT ATOMIC WEIGHT SCHUSTER PERIOD 

HYDROGEN 1.0080 1 2hr Om 40sec = 1/12 day 

CARBON 12.0112 3.47 6.98 hr 

NITROGEN 14.0067 3.74 7.52 hr 

OXYGEN 15.9994 4 8.04 hr 

The values in the table are within less than half of a percent of 
7 hours for carbon, 7.5 hours for nitrogen, and 8 hours for 
oxygen. These periods are closely commensurate with the rotation 
period of the earth as given in the second table. 

ATOMIC COMBINATIONS PERIODS 

24Tc = 168hr 7 days 

16"(N = 120hr 5 days 

3T 0 = 24hr 1 day 

It should be noted that the elements most abundant in and 
important to living organisms give rise to periods nearly 
commensurate with the earth's rotaton. Are the periods of these 
atoms in animal and human cells the zeitgebers for circadian 
rhythms? 

A second possible approach to the question of the proper radius 
to employ for gravitational times is to assume that all atoms in 
ordinary state have the same gravitational potential. This 
assumption is equivalent to: size is proportional to mass . 
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Alternate Assumption 2] Assume for atoms in organic molecules 
that size is proportional to mass, R = KGM. Substituting KGM for 
R in equation 1) gives, 

(8) 

That is, the period 1 for ordinary matter is closely 
proportional to the mass, and since 1 H = 2rrK312GmP, 

(9) = 
2rrK 312 GM 

2ITK 312 Gm 
p 

= 
M 

= A 

where A is the atomic weight. Using this result, 1A = A1H, we can 
construct the following table: 

ELEMENT ATOMIC WEIGHT SCHUSTER PERIOD 

HYDROGEN 1. 0080 2hr Om 40sec = 1/12 day 

CARBON 12.0112 24hr 9m 20sec = 1 day 

NITROGEN 14.0067 28hr 10m 7sec = 7/6 day 

OXYGEN 15.9994 32hr 10m 33sec = 4/3 day 

POTASSIUM 39.102 78hr 38m 16sec = 13/4 day 

Again the values in the table are (with the exception of 
potassium) close approximations to periods commensurate to common 
astronomical periods. Resulting values in days are given in the 
following table. 

ATOMIC COMBINATIONS PERIODS 

11c = 121H 1cH = 1 day 

71 CH = 61N L CHN = 7 days 

41 CHN = 710 1 cHON = 28 days 

13 L CHON = 1121K 1 CHONK = 364 days * 

Again we note that the elements most abundant in and important to 
living organisms give rise to the common periods of time derived 
from the earth's motions. *[More precisely, 366 1/3 days.] 
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CHON REVISITED 

Aristotle held that time was an inference of motion. But there 
appears to be a species of time that is not derived from motion. 
This time is associated with the density of matter and manifests 
as a zeitgeber that governs local clock rates. Its period is 
inversely proportional to the square root of the mass density. A 
familiar example is the Schuster Period, a bound on the period of 
an earth orbiting satellite when only gravitational and inertial 
forces are acting. This period of approximately 84 minutes is 
numerically related to the mean density of the earth and to the 
universal gravitational constant,G. In general the lower limit to 
orbiting periods is given by, 

(1) 

Where Risa size parameter (radius) and Mis a mass parameter. 
It is seen that equation (1) is a bounding case of Kepler's third 
law. For a spherical body, this boundary time, 1, in terms of 
the mean density p, is given by, 

(2) 
1=~ ~~ 

Equations (1) and (2) are usually applied to astronomical bodies 
and since gravity is a force weaker than the other forces by some 
40 orders of magnitude, it seems quite inappropriate that these 
equations have any significance for-bodies where gravity plays no 
detectable role, in particular on micro levels, such as for atoms 
and particles. However, there is nothing known that precludes 
their universal applicability. We therefore make the assumption: 

Assumption 1) Equations 1) and 2) may be meaningfully applied to 
any entity.occupying space and possessing mass. 

When applied to objects on the atomic level at first thought it 
would seem the results would be insignificant, but we are dealing 
with time, not force, and a surprising value emerges. As our 
example, we take for size the Bohr radius, a 0 , and for mass, mp, 
the mass of a proton. The time 1H, turns out to be almost exactly 
2 hours! Specifically, 

( 3) = 7239. 94sec 
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Spatially atomic Pchenomena are by size out of sight, but 
temporally the 10 ° coulomb to gravity ratio brings atomic 
gravitational periods squarely into the time frame of daily 
experience. This need not be surprising since on the atomic 
scale we are accustomed to dealing only with coulomb times which 
are of the order of 10-16 sec. If the ratio of force strengths 
between coulomb and gravitational forces is of the order of 1040

, 

then the ratio of gravitational times to coulomb times must be of 
the order of 1020 leading to atomic gravitational times of the 
order of 104sec., as found in the above example of the hydrogen 
atom. Another example is the Schuster time for an electron. Using 
re, the electron radius and me, the electron mass, the Schuster 
period is given by, 

(4) = 0.121sec 

which is about one-eighth of a second, an important time in human 
visual perception.rhythms. 

Next we note the near coincidence of the hydrogen gravitational 
time with a culturally employed time unit derived from the 
earth's rotation period. This leads us to suspect that micro 
gravitational times may play some hitherto unsuspected roles. 
On the basis of the result for atomic hydrogen it seems relevant 
to inquire how the Schuster equation could be applied to other 
atoms. 

The correct value to be used for mass is likely to be the atomic 
weight of the atom. But what value should be used for the size 
(radius)? The size of an atom can be defined in alternate ways, 
but which way is correct for equation (1)? One approach is to 
note relations between mass and density. For larger bodies, 
planets, stars, etc., there is a rough correlation between the 
density of the body and the reciprocal of the mass, which is to 
say, p ~ M- 1

• We provisionally therefore assume: 

Assumption 2] For atoms a~ the mass varies inversely with the 
density. 

This assumption is equivalent to M2 ~ L3 
• Substituting (KGM) 2 for 

L3 in the time equation, we get, 

( 5) T = 2II✓ (KGM) 
2 

= 2IIK 312 ,/GM 
GM 

That is, the period T for ordinary matter is closely 
proportional to the square root of the mass . 
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(6) 
1 = 2rrK

312jGM = 
1 H 2rrK 312 JGmP 

where A is the atomic weight. Using this result, 1A = 1 8~A, we 
can construct the following table: 

ELEMENT I ATOMIC WEIGHT I ~A SCHUSTER PERIOD 

HYDROGEN 1.0080 1 2hr om 40sec = 1/12 day 

CARBON 12.0112 3.47 6.98 hr 

NITROGEN 14.0067 3.74 7.52 hr 

OXYGEN 15.9994 4 8.04 hr 

We now introduce a third assumption: 

Assumption 3 J Gravitational periods are to be combined according 
to the Diophantine rule, n 11 1 = n 2 12 , where n 1 and n 2 are 
integers. 

This assumption leads to the following values for the combined, 
or beat, periods: 

ATOMIC COMBINATIONS PERIODS 

241c = 168hr 7 days 

l61N = 120hr 5 days 

310 = 24hr 1 day 

We note that the elements most abundant in and important to 
living organisms give rise to the common periods of time derived 
from the earth's motions . 
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THE ZEITGEBERS 
7/i-f?" Fq/l/(/OA//c CwC.k/' 

The general theory of relativity postulates the equivalence 
of space-time geometry and the dynamic or mechanical properties 
of matter. The equivalence of geometry and dynamics allows 
alternate descriptions of the world; the properties of space and 
time may be formulated in terms of the properties of energy and 
matter and vice versa. An example of this is the equivalence of 
mass densities and temporal periods. W~ have dimensionally, 

( 1) [ T 2 ] = [ ~~] 

More specifically, if T represents the fundamental tempo¥al 
period associated with a spherical object of radius Rand mass M, 
then 

(2) T2 = 4it2 R3 
GM 

where G is the Newtonian gravitational constant. Equation (2) is 
recognized as the Schuster period of a gravitating body, i.e. as 
the limiting case of Kepler's third law when the orbiting radius 
is equal to the object radius. Equation (2) may be rewritten in 
the form 

(3) 

where Q is the mass density. It follows that the frequency 
associated with a mass is proportional to the square root of the 
mass density. 

Three specific examples of equation (2) give us the 
fundamental periods of three universal clocks. The first of these 
is the atom clock based on the proton mass~ and the Bohr radius 
ao . 

(4) 
a3 

0 

/YI vc/{q,--
The second is the baryon clock based on the elect~on radius re 
and the proton mass~-

(5) T 2 = 4it 2 
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The third is the lepton clock based on the electron radius re and 
the electron mass Ille· 

(6) 

Using the values [1] 

a = 5.291772x10- 9 
0 

r = 2.817941xl0-13 
e 

cmJ mp = 1. 672623xl0-24 

cm) me = 9 .109390xl0-28 
gm 
gm 

The following values for periods and frequencies are obtained: 

CLOCK PERIOD FREQUENCY 

ATOM "t' = 
7 ).._ 3 7 , o/ 3 ~ ·MH 
7239.94 sec,, .... ;, 0.000138 hz 

BARYON T = 0.0028134 sec 355.44 
;--5 

LEPTON t = 0.120537 sec 8.296 
* The frequency 355.44 hz lies between F (349.23) and F# (369.99) 
above middle C . 

hz* 

hz 

These values are approximately 2 hours and 40 seconds for the 
atom clock, 2.8 milliseconds for the baryon clock, and one eighth 
second for the lepton clock. 

The ratios of the periods are given by: 

T = a3' 
"t' 

t 
T = yµ, 

where a is the fine structure constant andµ is the ratio of the 
proton to the electron mass. 
(a= 7.297 353 08x10- 3 and µ = 1.836 152 701xl0 3

) [1] 

[1] Cohen, E.R. and B.N.Taylor The fundamental physical constants 
• Physics Today, August 1992 p9ff 
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SCHUSBAS.W52 DISK: 

SOME SCHUSTER PERIOD BASICS 

The basic programs 

February 24, 1994 

DIOPHEQl.BAS 
DIOPHEQ2.BAS 
DIOPHEQ3.BAS 
DIOPHEQ4.BAS 
DIOPHEQ5.BAS 

ENTER THE SCHUSTER EXCESS, SECONDS OVER 84 MINUTES 
ENTER Ml AND M2 
ENTER THE DENSITY 
RANGE OVER VALUES OF DENSITY 
RANGE OVER VALUES OF TIME 

G = 6. 5 7 3 2 x 1 o-s 
Density, p = 5.517 ± 0.004 gm/cm3 ~ ~ = 84m + 19.6095 sec 
3-it = 9.424778 

~ = ✓3rr./ Gp 

DENSITY PERIOD 
,1 

No, G-PERIODs DAYS ERROR 

5.517 84m+19.609s 222 13 +33.3s 

5.513 84m+21.445s 973 57 -14.3s 

5.521 84m+17.776s 205 12 +44.ls 

5.51733 84m+19.3495 222 13 +0.009s 



FOR DENSITY= 5.517 
ERROR IN SEC 

THE G-PERIOD IS= 5059.609521579125 
G-PERIODS DAYS 

•;~;~;;;;;;;;;;;;===========;;;===========~;============== 

-53.50022888183594 2237 131 
-20.18643760681152 2459 144 

13.12735366821289 2681 157 
46.44114303588867 2903 170 

-40.37287521362305 4918 288 
-7.059083461761475 5140 301 

26.25470733642578 5362 314 
59.56849670410156 5584 327 

COMPLETE 

• 

• 



• DENSITY PERIOD No G-PERIOD DAYS ERROR 

5.517 84m+19.609s 222 13 +33.3s 

5.513 84m+21.445s 973 57 -14.3s 

5.521 84m+17.776s 205 12 +44.1s 

5.51733 84m+l9.3495 222 13 +0.009s 

• 

• 
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GRA VCLOCK.WPD 

Rough Draft 
·1son 

iii GRAVITATIONALCLOCKS 

.1;~/ 
i 
\_, . . .. ·~, 

1·-----·--··· -,,/ ) v - ~M.-a,;7 . ·- ~----&";;,,-
The existence of a fundamental temporal bound associated with gravitating bodies has long 

been recognized in physics and astronomy. This is the minimum period, -T = *2HR 3/2 IVG-M, given 
in terms of a body's mass M and radius R with the dimensionality of time. It represents the circular 
velocity at the surface of the body and is a minimum period both in the sense that no satellite orbiting 
the body can have a smaller orbital period than '*T and the body itself cannot have a period of rotation C(j-1'-Uef-.e-v 
less than *'T and remain stable. In effect the presence of gravitating mass establishes a local clock that · 
"beats time" for all mechanical movement in the neighborhood of the body. *This'minimum period, 
also called the "Schuster Period," may be expressed in terms of the mean density p of the body: 

/
't'~ .:j flj [. r f1 iJ'1 

- . . -l/4 . r :::. ( G-f) Vi S t'/1-J ;~ 

Its value for the earth is about 84 minutes, for the sun 
about 2 3/4 hours, and for the moon 108 minutesJA.ssuiiiing a 

(*-23 3 ___, 
mean density of a galaxy of 10 *gm/cm *, the minimum period 

is of the order of 108 years, about the same as the period 

of rotation. :- Y~-~~~----------------
.,....---~-,,,...,.,.....-

*AGW2 

The effects of the gravitational clock have been observed on all macroscopic scales from 
planets to the visible sample of the universe. Theoretically the gravitational clocks also are operative 
on a microscopic scale, but their effects are presumed submerged in the variety of effects resulting 
from the action of other forces, such as Coulomb forces. But is this really the case? The strength of 
the electric force is 1 O~O times greater than that of gravitational force, but this per "'se need not 
obscure the gravitational clock, since temporal effects rather than force effects are sought. In spite of 
the entirely negligible role of the gravitational force in microscopic structure, it may nonetheless be 
possible to detect on a macroscopic scale the gravitational clock of fundamental particles provided the 
basic period of the atomic gravitational clock is quite different from the basic period of any atomic 
electric clock, and provided that there is phase coherence so that the beat may be augmented by a 
factor proportional to the number of atoms. 

The atom as an "electric clock" has many basic frequencies that are manifest in optical, X-ray 
and other spectra. An example of a basic electric :frequency associated with the atom is the period of 
orbital revolution of an electron in the first Bohr orbit of a hydrogen atom. This time is 1 O*- 15 .81822 
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seconds, and is equal to *2nao 1 where *ao is the radius 
*OLC *2cR. 

of the first Bohr *orbit;u is the fine structure constant; c, 

the velocity of light; and R., the Rydberg constant. 

*AGW3 

The basic gravitational frequency of the hydrogen atom _, .. '-"''"'""'~""·"""'~----

will be the minimum frequency 

3/2 

*T= *2Tra 

0 
*/Gm-p 

where *mp is the mass of the proton. 

Using the values in Table I (Cohen and *DuMond, *Rev. Modern Physics, v. 37, No. 4, Oct. 
1965), we obtain for '*T the values in Table II using *mp or m H the equivalent mass of the hydrogen 
atom. These values are based on the unified scale of atomic weights, 12 C = 12. (The minimum period 
based 

16 h *m *s 

on the O = 16 scale of atomic weights is 15943 *. 07.) 
The gravitational period is seen to be completely 

different from electric periods, being 10 19.678 times as 
great as tO. This number factor is equal to the square root 
of S, the ratio between Coulomb forces and gravitational 
forces, 

S e2 10 39.356 
*Gmpme 

The elemental binding forces in molecules, crystals, and the microcosmos in general are 
electric, dominating gravitational forces by a factor= S. Nonetheless the basic gravitational frequency 
may play a role in the organization of 

*AGW4 

micro-structures, including living matter, through providing a clock with more convenient periods than 
the electric periods, since the basic period of a useful clock must be near to the *rythyms in movement 
and process required by organisms. 
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In order to calculate the values of other basic gravitational :frequencies associated with various 
atoms, we must determine the proper "gravitational" radius corresponding to the masses of atoms of 
atomic weight greater than unity. The "gravitational" radius of these atoms is more likely to be 
determined in the same manner as that of large gravitating bodies, rather than being analogous to 
coulomb radii. Stable, non-degenerate gravitating bodies appear to possess a maximum potential 
bound that is the same for stars, galaxies, clusters of galaxies *(Ref. 2). This potential bound, b, is 
about 10*- 4 of the *Schwarzschild potential limit and may be written 

GM<b 
*c2if 

We assume that the atoms, being stable, are governed by a similar law, and that the "gravitational" 
radius, r, appropriate to any atom is related to the atomic weight, A, by the relation 

*GA = k, a constant. 
2 

er 

For the hydrogen atom 

2*- *l 
*Gm *s k. 
~ 

2 
ca 
0 

*AGWS 

Assuming this relation to hold true for all atoms, we have 

r=aA 

0 *­
*m 
*p 

and the gravitational period for an atom of atomic weight A 

becomes 

= *2,ffr 3/2 a 3/2 A TA 
*,uA 0 *-

*GA *Gmm *m 
*p *p *p 
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A and m*p being in the same units. In the unified system of 
atomic weights, 12 C = 12, the proton mass, m 1.00727663. 
Hence, 

*TA (seconds)= 7241.3675 (seconds) 

1.00727663 

For example, the atomic weight A for carbon is 12.01115. This 

*s 
gives 86348* .8249 or 
A 

h *m *s 
23 59 8 *.8. 

*AGW6 

h *m *s 

For carbon 12, the value is 23 57 48 *. 7. The striking coincidence of these atomic gravitational 
periods with the earth's 24 hour period suggests that the carbon atom may be the *zeitgeber governing 
the *circadian *rhythym in most living organisms . 
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acti"1ties, pro\1de time to assist in practice "job inter\1ews" and other 
acti"1ties, ava· personal resources for students to haw "hands-on" work 
experiences (le them work on my stuff), and SACRIFICE my hair so the 
cosmetology stu nts can haw a liw model to practice on before taking the 
State License test. /DIV> 
<DIV>&nbsp;</DIV> 
<DIV>Most endea\.Ors t'lq_w resulted in great student 
success - e.g. - National winners in student leadership competitions, 98% pl 
passing rate in certificate prdgrams (i.e.-cosmetology), etc.</DIV> 
<DIV>&nbsp;</DIV> ',, 
<DIV>On the down side, personally, there haw been a few 
electronic de\1ces, truck transmiss~os, etc. that haw not had th 
success rate. </DIV> i 
<DN>&nbsp·</DIV> 
<DIV>Howe~r. based on my personal bell f and 
con\1ctions for all student success - I want ~ to takl1/9 look at the 
attachment Qpeg) with its 9 separate photos and mak'e a guess as to what my "New 
Summer Do" is!</DIV> 
< DIV>&nbsp; </DIV> 
<DIV>Hugs to all, </DIV> 
<DIV>Charlie</DIV> 
<DIV>&nbsp;</DIV> 
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TIMENOTS.P51 January 31, 1991 

Is the source of time built into all organisms, or are we really 
being driven by the earth clock outside us? 

--Avini, Empires of Time p29 

{[If CHON is the zeitgeber, can we then detect physical changes at 
the atomic and molecular levels having CHON periodicities? Any 
changes would have to be detected in individual atoms or molecules, 
because in aggregates it is highly improbable that the phases of 
the cycles would be the same. The statistical aggregation of random 
phases would wash out detectability of the cycles. For 
periodicities to be manifested in aggregates the atoms and 
molecules would have to be coherent, i.e. their individual periods 
would have _to be in phase. However, there do exist molecular 
aggregates which manifest periodicities. We call these aggregates 
living organisms. We are led to the surmise, consistent with what 
we know about biological clocks, that the zeitgeber lies within 
every atom of the organism. We may further speculate that coherence 
of atomic zeitgebers is a property of living systems. When the 
coherence diminishes, ageing takes place and when it reaches a 
certain level of randomness, death occurs. 

In living systems the zeitgebers are in phase, they exhibit 
coherence. In inanimate systems the zeitgebers are random. 
The fountain of youth is the resynchronization of the zeitgebers.]} 

V iolCtfrM.y f~ J.. 0 L~w 0 f TJi-tr-/f,,t//r.;)(fty,,-1,,c-wi /'u 
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THE ZEITGEBERS 

The general theory of relativity postulates the equivalence 
of space-time geometry and the dynamic or mechanical properties 
of matter. The equivalence of geometry and dynamics allows 
alternate descriptions of the world; the properties of space and 
time may be formulated in terms of the properties of energy and 
matter and vice versa. An example of this is the equivalence of 
mass densities and temporal periods. Ww have dimensionally, 

(1) 

More specifically, if T represents the fundamental temporal 
period associated with a spherical object of radius Rand mass M, 
then 

(2) T2 = 41t2 R3 
GM 

where G is the Newtonian gravitational constant. Equation (2) is 
recognized as the Schuster period of a gravitating body, i.e. as 
the limiting case of Kepler's third law when the orbiting radius 
is equal to the object radius. Equation (2) may be rewritten in 
the form 

(3) 

where Q is the mass density. It follows that the frequency 
associated with a mass is proportional to the square root of the 
mass density. 

Three specific examples of equation (2) give us the 
fundamental periods of three universal clocks. The first of these 
is the atom clock based on the proton mass IDp and the Bohr radius 
ao . 

(4) 

The second is the baryon clock based on the electron radius re 
and the proton mass IDp• 

(5) 
I3 

e 
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The third is the lepton clock based on the electron radius re and 
the electron mass ffle. 

(6) 

Using the values [1] 

a 0 = 5.291772xl0-9 

re = 2.81794lx10-13 
cm, mP = 1. 67 2 62 3xl0-24 

cm, me = 9. 109390xl0-28 
gm 
gm 

The following values for periods and frequencies are obtained: 

CLOCK PERIOD FREQUENCY 

ATOM "t' = 7239.94 sec 0.000138 hz 

BARYON T = 0.0028134 sec 355.44 hz* 

LEPTON t = 0.120537 sec 8.296 hz 
* The frequency 355.44 hz lies between F (349.23) and F# (369.99) above middle C . 

These values are approximately 2 hours and 40 seconds for the 
atom clock, 2.8 milliseconds for the baryon clock, and one eighth 
second for the lepton clock. 

The ratios of the periods are given by: 

T 
= a 3 

I 

t 
t 
T = v'µ, 

where a is the fine structure constant andµ is the ratio of the 
proton to the electron mass. 
(a= 7.297 353 08x10- 3 and µ = 1.836 152 701xl0 3

) [1] 

[1] Cohen, E.R. and B.N.Taylor The fundamental physical constants 
Physics Today, August 1992 p9ff 
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NEWCHON1.WP6 October 7, 1995 

ON CHON 
AND THE BOUNDARIES OF TIME 

Aristotle held that time was an inference of motion. But there 
appears to be a species of time that is not derived from motion. 
This time is associated with density and manifests itself as a 
bound to allowable periods and frequencies. A familiar example is 
the Schuster Period, a bound on the period of an earth orbiting 
satellite when only gravitational and inertial forces are acting. 
This period of approximately 84 minutes is numerically related to 
the mean density of the earth and to the universal gravitational 
constant,G. In general the lower limit to orbiting periods is 
given by, 

(1) 

Where Risa size parameter (radius) and Mis a mass parameter. 
For a spherical body, this boundary time, t, in terms of the 
mean density p, is given by, 

(2) T = r7rr 
~ Gp 

These equations govern gravitationally based temporal boundaries 
and are usually applied to astronomical bodies. Since gravity is 
a force weaker than the other forces by some 40 orders of 
magnitude, it seems quite inappropriate that these boundaries 
have any meaning for bodies where gravity plays an insignificant 
role, in particular on meso and micro levels. However, there is 
nothing known that precludes their universal applicability. We 
therefore make the assumption: 

Assumption 1] Equations 1) and 2) may be applied to any entity 
occupying space and possessing a definite mass. 

When applied to objects on the atomic level at first thought it 
would seem the results would be insignificant, but we are dealing 
with time, not force, and some surprising values emerge. 

Taking for size the Bohr radius, a 0 , and for mass, mp, the mass 
of a proton, the time i:H, turns out to be almost exactly 2 hours! 

(3) R T =2TI 
H 

p 

= 7239. 94sec 
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While spatially atomic phenomena are by size out of sight, 
temporally the 1040 coulomb to gravity ratio brings atomic 
gravitational periods into the time frame of daily experience. 
This need not be surprising since on the atomic scale we are 
accustomed to dealing only with coulomb times which are of the 
order of 10-16 sec. If the ratio of force strengths between 
coulomb and gravitational forces is of the order of 1040

, then 
the ratio of gravitational times to coulomb times must be of the 
order of 1020 leading to atomic gravitational times of the order 
of 104sec., as found in the above example of the hydrogen atom. 

The near coincidence of this hydrogen gravitational time with a 
culturally employed unit derived from the earth's rotation period 
leads us to suspect that micro gravitational times may play some 
hitherto unsuspected roles. Another example is the Schuster time 
for an electron, using re, the electron radius and me, the 
electron mass, is given by, 

(4) = 0. 121sec 

about one-eighth of a second, an important time in human visual 
perception. These gravitational times may supply the zeitgeber 
needed for various organic clocks and rhythms. 

On the basis of the result for atomic hydrogen it seems relevant 
to inquire how the Schuster equations could be applied to other 
atoms. One approach to this question is based on gravitational 
bounds, of which there are two: The first bound is the so-called 
Schwarzschild Limit. This is a relativistic bound that limits the 
gravitational potential of all matter (except that in black 
holes). It applies to nuclear matter and macro objects such as 
neutron stars. It is given by, 

(5) 

where k is a constant of the order of unity. The second bound 
governs all "ordinary" matter, that is matter composed of atoms 
and molecules. This potential limit is given by, 

(6) 

where~ is the fine structure constant. We here introduce a 
second assumption: 

'Assumption 2] For all atomic and molecular matter the 
gravitational radius is proportional to the metric radius. 

/, e, . e 1 ,- ,,.,,, ,.f 6 ,,t,v v,,,, ,,,_,.,,,_,,,.I :
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This assumption, a statement that all matter in ordinary state 
lies along the ~ 2 ~otential bound, says that the gravitational 
radius, GM/c2 = k~ R, or that R = KGM, where K is a constant. 
Substituting KGM for R in equation 1) gives, 

( 7) 'T = 2rr~ (KGM) 
3 

= 2IIK 312 GM 
GM 

That is, the period -r for ordinary matter is closely 
proportional to the mass, and since -r H = 2rrK312GmP, 

(8) = 
2IIK 312 GM 

2IIK 312 Gm p 

= 
M 

= A 

where A is the atomic weight. Using this result, TA= A-rH, we can 
construct the following table: 

ELEMENT ATOMIC WEIGHT SCHUSTER PERIOD 

HYDROGEN 1. 0080 2hr Om 40sec = 1/12 day 

CARBON 12.0112 24hr 9m 20sec = 1 day 

NITROGEN 14.0067 28hr 10m 7sec = 7/6 day 

OXYGEN 15.9994 32hr 10m 33sec = 4/3 day 

POTASSIUM 39.102 78hr 38m 16sec = 13/4 day 

We now introduce a third assumption: 

Assumption 3 J Gravitational periods are to be combined according 
to the Diophantine rule, n 1 -r 1 = n 2 1 2 , where n 1 and n 2 are 
integers. 

This assumption leads to the following values for the combined, 
or beat, periods: 

ATOMIC COMBINATIONS PERIODS 

lTc = 12TH '"( CH = 1 day 

7 '"( CH = 61N '"( CHN = 7 days 

4 '"( CHN = 71 0 '"( CHON = 28 days 

13 '"( CHON = 1121:K '"( CHONK = 364 days * 

We note that the elements most abundant in and important to 
living organisms give rise to the common periods of time derived 
from the earth's motions. *[More precisely, 366 1/3 days.] 
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CHON REVISITED 

Aristotle held that time was an inference of motion. But there 
appears to be a species of time that is not derived from motion. 
This time is associated with the density of matter and manifests 
as a zeitgeber that governs local clock rates. Its period is 
inversely proportional to the square root of the mass density. A 
familiar example is the Schuster Period, a bound on the period of 
an earth orbiting satellite when only gravitational and inertial 
forces are acting. This period of approximately 84 minutes is 
numerically related to the mean density of the earth and to the 
universal gravitational constant,G. In general the lower limit to 
orbiting periods is given by, 

(1) 

Where Risa size parameter (radius) and Mis a mass parameter. 
It is seen that equation (1) is a bounding case of Kepler's third 
law. For a spherical body, this boundary time, 1, in terms of 
the mean density p, is given by, 

• (2) T=~ ~~ 

• 

Equations (1) and (2) are usually applied to astronomical bodies 
and since gravity is a force weaker than the other forces by some 
40 orders of magnitude, it seems quite inappropriate that these 
equations have any significance for bodies where gravity plays no 
detectable role, in particular on micro levels, such as for atoms 
and particles. However, there is nothing known that precludes 
their universal applicability. We therefore make the assumption: 

Assumption l] Equations 1) and 2) may be meaningfully applied to 
any entity occupying space and possessing mass. 

When applied to objects on the atomic level at first thought it 
would seem the results would be insignificant, but we are dealing 
with time, not force, and a surprising value emerges. As our 
example, we take for size the Bohr radius, a 0 , and for mass, mp, 
the mass of a proton. The time TH, turns out to be almost exactly 
2 hours! Specifically, 

(3) = 7239. 94sec 
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Spatially atomic fchenomena are by size out of sight, but 
temporally the 10 ° coulomb to gravity ratio brings atomic 
gravitational periods squarely into the time frame of daily 
experience. This need not be surprising since on the atomic 
scale we are accustomed to dealing only with coulomb times which 
are of the order of 10-16 sec. If the ratio of force strengths 
between coulomb and gravitational forces is of the order of 1040

, 

then the ratio of gravitational times to coulomb times must be of 
the order of 1020 leading to atomic gravitational times of the 
order of 104sec., as found in the above example of the hydrogen 
atom. Another example is the Schuster time for an electron. Using 
re, the electron radius and me, the electron mass, the Schuster 
period is given by, 

(4) = 0.121sec 

which is about one-eighth of a second, an important time in human 
visual perception.rhythms. 

Next we note the near coincidence of the hydrogen gravitational 
time with a culturally employed time unit derived from the 
earth's rotation period. This leads us to suspect that micro 
gravitational times may play some hitherto unsuspected roles. 
On the basis of the result for atomic hydrogen it seems relevant 
to inquire how the Schuster equation could be applied to other 
atoms. 

The correct value to be used for mass is likely to be the atomic 
weight of the atom. But what value should be used for the size 
(radius)? The size of an atom can be defined in alternate ways, 
but which way is correct for equation (1)? One approach is to 
note relations between mass and density. For larger bodies, 
planets, stars, etc., there is a rough correlation between the 
density of the body and the reciprocal of the mass, which is to 
say, p ~ M- 1

• We provisionally therefore assume: 

Assumption 2] For atoms ~-,the mass varies inversely with the 
density. / 

This assumption is equivalent to M2 ~ L3 
• Substituting (KGM) 2 for 

L3 in the time equation, we get, 

( 5) T = 2rr✓ (KGM) 
2 

= 2rrK 312,(GM 
GM 

That is, the period 1 for ordinary matter is closely 
proportional to the square root of the mass. 
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1" 2rrK 312._/Gi1 ,jiiI {A (6) = = = 
1" H 2rrK

312 ✓GmP rm;, 

where A is the atomic weight. Using this result, -rA = -rH..fA, we 
can construct the following table: 

ELEMENT I ATOMIC WEIGHT I ..fA SCHUSTER PERIOD 

HYDROGEN 1.0080 1 2hr Om 40sec = 1/12 day 

CARBON 12.0112 3.47 6.98 hr 

NITROGEN 14.0067 3.74 7.52 hr 

OXYGEN 15.9994 4 8.04 hr 

We now introduce a third assumption: 

Assumption 3 J Gravitational periods are to be combined according 
to the Diophantine rule, n 1 -r 1 = n 2 -r 2 , where n 1 and n 2 are 
integers. 

This assumption leads to the following values for the combined, 
or beat, periods: 

ATOMIC COMBINATIONS PERIODS 

24-rc = 168hr 7 days 

161" N = 120hr 5 days 

31" 0 = 24hr 1 day 

We note that the elements most abundant in and important to 
living organisms give rise to the common periods of time derived 
from the earth's motions . 
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NEWCHON3.WP6 March 11, 1996 Rev, April 11, 1996 

EXPLORING CHON 

Aristotle held that time was an inference of motion. But there 
appears to be a species of time that is not derived from motion. 
This time is associated with the density of matter and manifests 
as a zeitgeber that governs local clock rates. Its period is 
inversely proportional to the square root of the mass density. A 
familiar example is the Schuster Period, a bound on the period of 
an earth orbiting satellite when only gravitational and inertial 
forces are acting. This period of approximately 84 minutes is 
numerically related to the mean density of the earth and to the 
universal gravitational constant,G. In general the lower limit to 
orbiting periods is given by, 

(1) 

Where Risa size parameter (radius) and Mis a mass parameter. 
It is seen that equation (1) is a bounding case of Kepler's third 
law. For a spherical body, this boundary time, 1, in terms of 
the mean density p, is given by, 

(2) 1=~ ~~ 

Equations (1) and (2) are usually applied to astronomical bodies 
and since gravity is a force weaker than other forces by some 40 
orders of magnitude, it seems quite inappropriate that these 
equations contain anything of significance for bodies where 
gravity plays no detectable role, in particular for micro objects 
such as atoms and sub-atomic particles. There is, however, 
nothing known that precludes the universal applicability of these 
equations. At first thought, when applied to objects on the 
atomic level, it would seem the results would be .insignificantly 
small. Remembering, though, that we are dealing with time, not 
size or force, this is not the case. Coulomb times are of the 
order of 10-16 seconds. If the ratio of force strengths between 
coulomb and gravitatonal forces is of the order of 1040 then the 
ratio of gravitational times to coulomb times must be of the 
order of 1020 leading to atomic graviational times of the order 
of 104 seconds. 

As an example, take for size the Bohr radius, a 0 , and for mass 
the proton mass, mP. The time 1H, turns out to be almost exactly 
2 hours! Explicitly, 

1-/q 
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(3) = 7239. 94sec = 2hours 40seconds 

Another example is the Schuster time for an electron. Using re, 
the electron radius and me, the electron mass, the Schuster 
period is given by, 

(4) T =Zrr ~ r,' 
e Gm 

e 

= 0 .121sec 

which is about one-eighth of a second, again in the time frame of 
daily experience as this is an important time interval for human 
visual perceptions. fi" fl b · ,. 1 

?. 10. 0Vf fh.i:P Vt?II\.I~ w{' 5 ,,,,1-,,t._ /...,-.- f;...,._e fo r-r~,/~''7::, 

A third value of possible physiological interest is the time 
given by the Schuster period of the proton: 

(S) , P = Zrr~ = 2. 813 millisec 

The time values given in equations 3), 4), and 5), since they are 
present in every atom or organic molecule, may play the role of 
zeitgebers in physiological processes. 

Noting the near coincidence of the hydrogen gravitational time of 
two hours with twice the culturally employed time unit derived 
from the earth's rotation period, we are led to surmise that 
micro gravitational times may play some hitherto unsuspected 
role. On the basis of the result for atomic hydrogen it seems 
relevant to go further and inquire how equation(l) might be 
applied to other atoms. 

The correct value to be used for mass in equation(l) is likely to 
be a function of the atomic weight of the atom. But the value to 
be used for the size (radius) in equation(l) is uncertain as we 
are dealing with gravitational rather than coulomb effects. 

One approach is to note that the relation between density and 
mass for some larger bodies, planets, stars, etc., is that the 
density is roughly proportional to the reciprocal of the mass, 

p ex M-1. 
Alternate Assumption 1] We provisionally assume the same for 
atoms, that the density varies inversely with the mass. This is 
equivalent to M2 

ex R3 
• Substituting (KGM) 2 for R3 in 

equation(l), we get, 

/J-/to 
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t = 2rr~ (KGM) 
2 = 2nK'12,(GM 

GM 

That is, the period 1 is approximately proportional to the 
square root of the mass. This leads to, 

(7) 
1 = 2rrK

312,{GM = 
1 H 2rrK 312 

JGmP 

where A is the atomic weight. 
Using this result, 1A = 1H~A, we can construct the following 
table: 

ELEMENT ATOMIC WEIGHT SCHUSTER PERIOD 

HYDROGEN 1.0080 1 2hr Om 40sec = 1/12 day 

CARBON 12.0112 3.47 6.98 hr 

NITROGEN 14.0067 3.74 7.52 hr 

OXYGEN 15.9994 4 8.04 hr 

The values in the table are within less than half of a percent of 
7 hours for carbon, 7.5 hours for nitrogen, and 8 hours for 
oxygen. These periods are closely commensurate with the rotation 
period of the earth as given in the second table. 

ATOMIC COMBINATIONS PERIODS 

241c = 168hr 7 days 

161N = 120hr 5 days 

310 = 24hr 1 day 

It should be noted that the elements most abundant in and 
important to living organisms give rise to periods nearly 
commensurate with the earth's rotaton. Are the periods of these 
atoms in animal and human cells the zeitgebers for circadian 
rhythms? 

A second possible approach to the question of the proper radius 
to employ for gravitational times is to assume that all atoms in 
ordinary state have the same gravitational potential. This 
assumption is equivalent to: size is proportional to mass . 

/1-/c 
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Alternate Assumption 2] Assume for atoms in organic molecules 
that size is proportional to mass, R = KGM. Substituting KGM for 
R in equation 1) gives, 

(8) 

That is, the period T for ordinary matter is closely 
proportional to the mass, and since TH = 2rrK312GmP, 

(9) = 
2ITK 312 GM 

2ITK 312 Gm 
p 

= 
M 

m p 

= A 

where A is the atomic weight. Using this result, TA= ATtt, we can 
construct the following table: 

ELEMENT ATOMIC WEIGHT SCHUSTER PERIOD 

HYDROGEN 1.0080 2hr Om 40sec = 1/12 day 

CARBON 12.0112 24hr 9m 20sec = 1 day 

NITROGEN 14.0067 28hr l0m 7sec = 7/6 day 

OXYGEN 15.9994 32hr l0m 33sec = 4/3 day 

POTASSIUM 39.102 78hr 38m 16sec = 13/4 day 

Again the values in the table are (with the exception of 
potassium) close approximations to periods commensurate to common 
astronomical periods. Resulting values in days are given in the 
following table. 

ATOMIC COMBINATIONS PERIODS 

TcH = 1 day 

TcHN = 7 days 

4TCHN = 7To TcttoN = 28 days 

TcHoNK = 364 days * 

Again we note that the elements most abundant in and important to 
living organisms give rise to the common periods of time derived 
from the earth's motions. *[More precisely, 366 1/3 days.] 
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ATOMIC, BIOLOGICAL AND COSMIC CLOCKS 

INTRODUCTION 

The definition and measurement of time ultimately depend on reduction to 
some cyclical phenomenon. Units of time are definable only in terms of a periodic 
motion such as the earth's rotation or annual motion, or in terms of electomagnetic 
vibrations. All clocks require for their operation and calibration a basic pulse such as 
provided by a pendulum, a piezzo elcetric crystal, a multivibrator, or some sort of 
molecular vibrations. Although both in physics and psychology we have the concept 
of a "linear flow of time" and usually represent time as a uniformly increasing variable 
operationally time must be derived from some sort of periodicity. 

Since the advent of the jet age we have become increasingly aware of the im­
portance of biological clocks that regulate many of the physiological processes that 
take place in living organisms. Extensive experimental work on plants and animals shows 
that the clock that exists in all bio-organisms governs the life rhythms of the organism 
and its sub-components. It is reasonable to surmise that these biological clocks, like 
other clocks, must contain as oscillator that supplies energy or information having 
periodic components. A name frequently given to this oscillator is zeitgeber or time 
giver. The puls~ provided by the zeitgeber can be sensed by the organism and used 
either to calibrate or to control directly other physiological processes. 

The zeitgeber has two important properties: first, it appe?as to be universally 
accessible to all living organisms even down to individual cells. Second, it supplies 
periodic pulses whose fundamental frequencies or harmonics approximate basic bio­
rhythms such as 24 hours or 28 days. The macroscopic properties of biological clocks 
do not unequivocally suggest whether the zeitgeber is endogenous or exogenous, i.e. 
whether the basic oscillator is contained in the organism and is independent of the 
environment or is entrained and enforced by environmental cycles. Most of the ex­
perimental results, however, can be accounted for by an endogenous clock that pos­
sesses periods equal to the principal geophysical and astronomical cycles to which life 
is tuned. 

In this paper a zeitgeber satisfying these two prescriptions is proposed. It is 
an endogenous physical oscillator present in all matter and possessing periods corres­
ponding to environmental cycles. Although neither the exact nature of this zeitgeber's 
pulse nor how a bio-organism senses or makes use of the pulse can be given at present, 
the requirements and implications of the herein proposed zeitgeber hypothesis are 
deveroped. 

ATOMIC GRAVITATIONAL CLOCKS 

Since the most exacting requirement to be placed on any zeitgeber hypothesis 
is the ability to reproduce accurately the quantitative values of the periods observed 
in bio-rhythms, success in this aspect should be taken as the first test for any model. 
Accordingly, the rationale adopted in this paper has been first to find an hypothesis 

T ii l3 
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ATOMIC, BIOLOGICAL AND COSMIC CLOCKS 

The definition and measurement of time ultimately depend 

on reduction to some cyclical phenomenon. Units of time are 

definable only in terms of a periodic motion such as the earth's 

rotation or annual motion, or in terms of electromagnetic 

vibrations. All clocks require for their operation and 

calibration a basic pulse such as provided by a pendulum, a 

piezzo electric crystal, a multivibrator, or molecular 

vibrations. Although both in physics and psychology we have 

the concept of a "linear flow of time" and usually represent time 

• as a uniformly increasing variable, operationally time must be 

derived from some periodicity. 

Since the advent of the jet age we have become increasingly 

aware of the importance of biological clocks that regulate many 

of the physiological processes that take place in living organisms. 

Extensive experimental work on plants and animals shows that the 

clock that exists in all bio-organisms governs the life rythyms of 

the organism and its components. It is reasonable to surmise that 

these biological clocks, like other clocks, must contain an 

oscillator that supplies energy or information having periodic 

components. A name frequently given to this oscillator is the 

zeitgeber or "time giver." The pulses provided by the zeitgeber 

can be sensed by the organism and used either to calibrate or to 

• control physiological processes. 
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' The zei~geber has two important properties: first, it 

appears to be universally accessible to all living organisms 

even down to being available to cells. Second, it supplies 

periodic pulses whose fundamentals or harmonics approximate 

some basic biological rythym such as 24 hours or 28 days. 

The macroscopic properties of biological clocks do not 

unequivocally su9gest whether the zeitgeber is endogenous 

or exogenous, . i.e., whether the basic oscillator is contained 

and is independent of the environment or is trained and forced 

by environmental cycles. Most of the experimental results, 

however, can be accounted for by an endogenous clock that 

possesses periods equal to the principal geophysical and 

astronomical cycles to which life is tuned . 

In this paper a zeitgeber satisfying these two 

prescriptions is proposed. It is an endogenous physical· 

oscillator present in' all matter and possessing periods 

corresponding to environmental cycles. Although neither the 

exact nature of this zeitgeber's pulse nor how a bio-organism senses 

or makes use of the pulse can be given at present, the requirements 

and implications of the here proposed zeitgeber hypothesis are 

developed. 

ATOMIC GRAVITATIONAL CLOCKS 

Since the most unequivocal requirement to be placed on any 

zeitgeber hypothesis is the ability to reproduce accurately the 

• quantitative values of the periods of observed bio-rythyms, success 
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in this should be taken as the first test for any model. 

Accordingly the rationale adopted in this paper has been first 

to find an hypothesis that satisfies the two overriding 

requirements of bio-clocks, their ubiquity in living matter 

and the generation of the prescribed periods. The quantitative 

success of a model of the zeitgeber would then justify a more 

detailed elaboration of the model. 

The existence of a fundamental temporal bound associated 

with gravitating bodies has long been recognized in physics 

and astronomy. This bound is the minimum period, 

. given in terms of a body's mass Mand radius R with G being the 

Newtonian gravitational constant. It corresponds to the 

ciruclar velocity at the surface of the body and is a minimum 

period both in the sense that no satellite orbiting the body 

can have a smaller orbital period than t and the body itself 

cannot have a period of rotation less than¥ and remain 

gravitationally stable. The period~ determines a basic 

"frequency" that governs dynamical behavior in the neighborhood 

of the gravitating body. For example, Kepler's Third Law in 

terms of Tis simply: (orbital period) = (~/R
312

)· (orbital 

semi-major axis) 312 • In the above sense it may be said that the 

presence of a gravitating mass establishes a local clock that 

"beats time" for dynamical.motions in the neighborhood of the body. 
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The minimum period, t , also called the "Schuster Period," 

may be expressed in terms of the mean density p of the body by, 

-Vz V pT = 3rr/G. Some approximate values of Tare: for the earth 

84 minutes, for the moon 108 minutes, and for the sun 2 3/4 hours; 

-23 3 assuming a mean density of the milky way of 10 . gm/cm, the 

8 galactic minimum period is of the order of 10 years or about 

the same as its period of rotation. 

The effects of this gravitational clock have been observed 

in the cosmic and of the time scale from planets to the largest 

known aggregates of matter in the universe. Are gravitational 

clocks also operative on a microscopic scale? Theoretically, 

the gravitational clock should be universal, associated with all 

• matter, whatever its mass. The Schwarzschild solution to the 

field equations of general relativity establishes for all_ 

masses having spherical symmetry the relation[R R 2 /R 3 ) equal 
S C 

• 

to a.constant that depends on the density distribution; where 

R
5 

is the Schwarzschild radius, 2GM/c 2 , and Rc is the radius 

of curvature of space-time at the coordinate distance R from 

the center of the body (R ~ the physical radius). Substituting 

the value of Rs gives, (Rc/c) 2 a R3 /2GM. 

It is thus seen that a local time period is defined by 

the ratio of the local curvature of space to the velocity of 

propagation of light. This period is inversely proportional to 

the square root of the mean density of matter within the 

coordinate distance R. Hence a gravitational period -- equal to 

V 
if the constant of proportionality is 8rr 2 should exist in T --
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the neighborhood of all masses r~gardless of the spatial scale 

of the mass aggregate involved. However, microcosmic. gravitational 

effects are presumed submerged in the variety of effects resulting 

from the action of other dominating forces such as Coulomb forces. 

The elemental binding forces in molecules, crystals, and in the 

microcosmos in general, are electric. Although structural 

patterns are determined by these Coulomb forces, which are stronger 

than gravitational forces by a factor S = e 2/Gm m = 1039 • 356 
p e 

(e is the charge on the electron, G the gravitational constant, 

mp the mass of the proton and me the mass of the electron), this 

need not per se obscure manifestation of the effects of micro­

cosmic gravitational clocks whose temporal effects rather than 

force effects are sought. In spite of the negligible role played 

by gravitational force in microscopic structures, it may somehow 

be possible that the temporal effects of the gravitational 

clocks of fundamental masses are detectable on a macroscopic 

scale. Two conditions favorable to this would be for the 

gravitational periods of atoms to be completely different from 

their electric periods, and for there to be sufficient phase 

coherence that periodic atomic. gravitational effects will not be 

lost in summation over random phases . 

. The atom as an "electric clock" has many frequencies that 

are manifest in optical, X-ray and other spectra. An example of 

a basic electric frequency associated with the atom 1s that 

corresponding to the period of orbital revolution of an electron 

in the first Bohr orbit of a hydrogen atom. This time interval 
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1
·s 10-15.81822 d secon s, and is equal to 2 1Tao ;::: · l where a 

ac 2cRoo o 
is 

the radius of the first Bohr orbit; is the fine structure 

constant; c the velocity of light; and Roo, the Rydberg constant. 

The basic gravitational frequency of the hydrogen atom 

will be the frequency corresponding to the minimum period, 

Using the values in Table I (Cohen and DuMond, Rev. Modern 

Physics, v. 37, No. 4, Oct. 1965), we obtain for¥ the first 

value in Table II. The mass values are based on the unified 

scale of atomic weights, 12c = 12. 

It is somewhat surprising that the combination of 

• fundamental constants whose c.g.s. values range from 10-23 to 

10- 6 define in exactly the manner of cosmic gravitational 

relationships a basic time period of almost precisely two hours. 

This _fundamental gravitational period of the hydrogen atom, 

• 

h . h d . b . 1019. 678 /'l!" • w ic we may esignate y TH' is = y~ times·as. great 

as the basic Coulomb period of the hydrogen atom. The value of 

TH is not located on the micro or cosmic ends of the temporal 

scale but falls in the very range of time periods that are 

characteristic of life processes. The existence of a ubiquitous 

oscillator - the hydrogen atom - having a temporal period 

commensurate with astronomical and biological periods suggests 

that the hydrogen atom might be playing some part in the 

zeitgeber of biological clocks . 

'. 
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In addition to the_ gravitational period, TH' associated 

with the neutral unexcited hydrogen atom, by means of Eq. (1), 

two other basic_ gravitational periods may also be calculated. 

One of these that has an order of magnitude suitable for 

temporal regulation of many shorter physiological processes is 

the "electron period" (T) based on m and r, the mass and e e e 

radius of the electron. The existence of a clock with a pulse 

period of about one-tenth of a second (Table II, second value) 

would be appropriate for calibrating processes such as heart 

beat, optic scanning, etc. For completeness, a third 

gravitational period, the "nuclear period" (Tn), is taken to 

a 3 TH (Table II, third value) • 
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III. GRAV;I:TATIONAL CLOCKS 

The Schwarzschild solution to the field ~quations of 

. general relativity establishes for all physical bodies the 

relation 

(1) R R 2;R3 = constant 
S C 

between R, the Schwarzschild radius of the body, R the local 
. S C 

radius of curvature of space, and R physical radius (Ref. 1). 

This expression implies the existence of a fundamental time 

period associated with every physical body. Substituting 

2GM/c2 for Rs gives, 

-
C 

This local basic time period Tis thus proportional to the 

ratio of the local radius of curvature of space to the velocity 

of light, or 

2 If the constant k is taken to be 8TT , the basic period T 

becomes equal to the minimum gravitational period,¥, associated 

with gravitating bodies. This period, 
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sometimes called the "Schuster Period" is the well known limiting 
t 

minimum period for bodies orbiting about a spherical mass M of 

radius R. Eq. (1) also is the limiting rotation period for a 

gravitating body with dynamic stability. 

Although for small distances the effects of_ gravitational 

forces are negligible with respect to other forces (Coulomb 

forces, for example, are 10 40 times greater than_ gravitational 

forces), there is no reason to doubt the universal validity of 

Eq. (1) and its inference for the existence of a fundamental 

characteristic time associated with the local curvature of 

space. The effects of this "gravitational clock" are well 

known in tl?,e macrocosmos, governing dynamical motions of.cosmic 

bodies. Is it possible to detect the effects of the_ gravita­

tional clock associated with the small fundamental masses, the 

atoms or elementary particles? Certainly it is not· possible to 

~aetect the gravitational force effects associated with entities 

whose structure is overwhelmingly determined by other forces, 

but it still may be possible to detect the temporal effects of 

the gravitational clock especially if the b~sic gravitation 

periods are markedly different from electric and other periods 

associated with the atom . 
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The existence of a fundamental temporal. bound associated 

with gravitating bodies has long been recognized in physics 

d t Th .. th . . . d v 2 3/2;;-;,;:;;-an as ronomy. is is e minimum perio, T = ~R vGM, 

given in terms of a body's mass Mand radius R with the 

dimensionality of time. It represents the circular velocity 

at the surface of the body and is a minimum period both in 

the sense that no satellite orbiting the body can have a 

smaller orbital period than~ and the body itself cannot have 

a period of rotation less than~ and remain stable. In 

effect the presence of gravitating mass establishes a local 

clock that "beats time" for all mechanical movement in the 

.• neighborhood of the body. This minimum period, also called 

the "Schuster Period," may be expressed in terms of th~ mean 

density p of the body: 

• 

Its value for the earth is about 84 minutes, for the sun 

about 2 3/4 hours, and for the moon 108 minutes. Assuming a 

mean density of a galaxy of 10-23 grn/crn3 , the minimum period 

is of the order of 108 years, about the same as the period 

of rotation . 

I 
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The effects of the gravitational clock have been observed 

on all macroscopic scales from planets to the visible sample 

of the universe. Theoretically the gravitational clocks also 

are operative on a microscopic scale, but their effects are 

presumed submerged in the variety of effects resulting from 

the action of other forces, such as Coulomb forces. But is 

this really the case? The strength of the electric force is 

1040 times greater than that of gravitational force, but this 

per se need not obscure the gravitational clock, since 

temporal effects rather than force effects are sought. In 

spite of the entirely negligible role of the gravitational 

force in microscopic structure, it may nonetheless be possible 

to detect on a macroscopic scale the gravitational clock of 

' fundamental particles provided the basic period of the atomic 

gravitational clock is quite different from the basic period 

of any atomic electric clock, and provided that there is 

phase coherence so that. the beat may be augmented by a factor 

proportional to the number of atoms. 

The atom as an "electric clock" has many basic frequencies 

that are manifest in optical, X-ray and other spectra. An 

example of a basic electric frequency associated with the atom 

is the period of orbital revolution of an electron in the 

first Bohr orbit of a hydrogen atom. This time is 10-15 · 81822 

seconds, and is equal to 2TTao = 1 where ao is the radius 
ac 2cRcx, 

of the first Bohr orbit;a is the fine structure constant; c, 

the velocity of light; and Rex,, the· Rydberg constant.· 
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The basic. gravitational frequency of the hydrogen atom 

will be the minimum frequency 

'{- = 2-rra 3/2 
0 

where mp is the mass of the proton. 

Using the values in Table I (Cohen and DuMond, Rev. 

Modern Physics, v. 37, No. 4, Oct. 1965), we obtain for~ 

the values in Table II using mp or mH the equivalent mass of 

the hydrogen atom. These values are based on the unified 

scale of atomic weights, 12c = 12. (The minimum period based 

on the 16
0 = 16 scale of atomic weights is lh 59m 43s.07.} 

The gravitational period is seen to be completely 

d . ff t f 1 t . . d b . 1019. 6 7 8 . . 1 eren rom e ec ric perio s, eing times as 

great as t
0

• This number factor is equal to the square root 

of·s, the ratio between Coulomb forces and gravitational 

forces, 

= 1039.356_ 

The elemental binding forces in molecules, crystals, 

and the microcosmos in general are electric, dominating 

gravitational forces by a factor= S. Nonetheless the basic 

gravitational frequency may play a role in the organization of 
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• micro-structures, includfng lLv_i!lg matter, ~hrough_ providing 

a clock J[it4 more convenient periods than the electric 

periods, since the basic period of a useful clock must be 

near to the rythyrns in movement and process required by 

organisms~ 

In order to calculate the values of other basic 

gravitational frequencies associated with various atoms, we 

must determine the proper "gravitational" radius corresponding 

to the masses of atoms of atomic weight greater than unity. 

The "gravitational" radius of these atoms is more likely to be 

determined in the same manner as that of large gravitating 

bodies, rather than being analogous to coulomb radii. Stable, 

non-degenerate gravitating bodies appear to possess a maximum 

• potential bound that is the same for stars,. galaxies, clusters 

• 

of_galaxies (Ref. 2). This potential bound, b, is about 10-4 
. -

of the Schwarzschild potential limit and may be written 

GM s b 

c 2R 

We assume that the atoms, being stable, are governed by a 

similar law, and that the flgravitational" radius, r, appro­

priate to any atom is related to the atomic weight, A, by the 

relation 

GA = k, 

c 2r 

a constant. 
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Gm = ,/s-1 = k. __ P 

c2ao 
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Assuming this relation to hold true for all atoms, we have 

r = a
0 

A 
m 

p 

and the gravitational period for an atom of atomic weight A 

becomes 

-rA 
= 21rr3/2 

GA 

= 21raa3/2 A= 

Gm m 
p p 

-r A ·o 
m 

p 

A and m being in the same units. In the unified system of 
p 

. 12 
atomic weights, C = 12, the proton mass, m = 1.00727663. 

Hence, 

-rA(seconds) = 7241.3675 4. (seconds) 
1.00727663 

For example, the atomic weight A for carbon is 12.01115. This 

gives -rA = 86348s.8249 or 
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• For carbon 12, the value is 23h 57m 48 5 .7. The striking 

• 

• 

- . - . 

coincidence of these atomic gravitational periods with the 
::. 

earth'~ 24 hour period suggests that the carbon atom may be 

the zeitgeber governing the circadian rhythym in most living 

organisms . 
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• ATOMIC, BIOLOGICAL AND COSMIC CLOCKS 

• 

I. BIOLOGICAL CLOCKS 

A brief but fair summary statement of the essence of 

the experimental conclusions of work on biological rythyms and 

cyclical phenomena in living matter is that there exists a 

"Zeitgeker" that provides the pulse beat by which living 

O!ganisms structure their temporal processes. Further, this 

Zeitgeker should 1) be universally available to every organism 

and its sub-components down to the level of the single cell; 

2) possess certain intrinsic periods either as its fundamental 

or a harmonic - the principal biological periods being (a) 

the Circadian or 24 hour period, (b) the menstrual or 28 day 
I 

period, and (c) a short period of the order of 1/15 second 

exhibited by many physiological processes. 

The foregoing properties of the Zeitgeker do not permit 

a decision whether the ·clock is endogenous or exogenous. 

However, most of the experimental results could be accounted 

for by an endogenous clock possessing exogenous periods, i.e., 

periods corresponding to the principal geophysical and 

astronomical cycles to which life seems tuned. 

In this paper a clock meeting these prescriptions is 

suggested. It is an endogenous clock, universally available 

with all of the correct periods. However, no theory of how 

an organism senses this clock or makes use of its periods can 

• be given at present. 



• 

• 
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The elemental bindi!1,g forces in molecules, crystals, 

and in the microcosmos in_ general, are electric. Although 
- -

structural patterns are determined by these coulomb forces, 

which are stronger than gravitational forces by a factor 

S = e 2/Gmpme = 1039 • 356 , this need not per se obscure 

manifestation of the microcosmic gravitational clock whose 

temporal effects rather than force effects are sought . 
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Livi?g matter is composed largely of the four elements, 

Carbon, _Oxygen, Nitr~gen, and Rydr~gen. About 96% of the 

human body by weight is distributed arno?g these four elements~ 

In Table III are given the fundamental_ gravitational periods 

of these basic organic elements • 
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Tbe details of such a theory will depend on the answer to a 

qq.e~tiQ:r:i.that has remained unanswered for 300_years what 

is_ gravity? 
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(B) 

This-basic_ gravitational period of approximately two hours 

ii-~6!:..the -6rdei-·of·magriitude cif characteristic times encountered 

in processes on the human scale. Such a frequency could there­

fore play a useful role in the organization of various systems, 

including living matter that require a metronome to_ govern 

their basic rhythyms and cyclical processes. 

A second basic period that has an order of magnitude suitable 

for time control of many life processes is the "electron 

period" based on me and re, the mass and "radius" of the 

electron. The existence of a clock with a pulse period of 

about one-tenth of a second (Table II) would be useful for 

_ governing processes such as heart beat, optic imaging, etc . 
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The definition and measurement of time ultimately depends 

on the existence of cyclical phenomena. Units of time are 

definable only in terms of some periodic motion such as the 

earth's rotation, annual motion, or the lunar cycle. Clocks 

require for their operation and calibration a basic beat such 

as provided by a pendulum, a piezzo electric crystal, a 

multivibrator, or molecular vibration. Although both in physics 

and psychology we have the concept of a "linear flow of time" 

and frequently represent time as a uniformly increasing 

• independent variable, operationally time must always be 

inferred from periodicity. 

• 

Since the advent of the jet age we have become increasingly 

aware of the importance of the biological clocks that regulate 

many of the processes that take place in living organisms. 

Extensive experimental work shows that in all bio-organisms 

there exists a "clock" that allows the organism or its components 

to calibrate their temporal processes. 

It is reasonable to surmise that these biological clocks, 

like· other clocks, must include a basic component that supplies 

energy or information with a periodic content. The usual name 

given to this component is the zeitgeber or "time giver." The 

zeitgeber is some sort of oscillator whose periods can be sensed 

by the organism and used either to calibrate or to govern the 
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• organism's temporal processes. The zeitgeber appears to be 

universally accessible to organisms even to the level of a single 

cell. It supplies intrinsic fundamental or harmonic periods 

• 

• 

that are closely equal to biological rythyms such as 24 hours 

and 28 days. The. macroscopic properties of the zeitgeber do 

not permit a decision whether the clock is endogenous or 

exogenous, i.e., whether its basic oscillator is independent 

of the environment or is conditioned by the environment. However, 

most of the experimental results could be accounted for by an 

endogenous clock possessing exogenous periods, i.e., periods 

corresponding to the principal geophysical and astronomical 

cycles to which life seems tuned. 

In this paper a zeitgeber meeting these prescriptions is 

su9gested. It is an endogenous physical oscillator present in all 

matter and possessing all of the correct periods. However, no 

theory of how a biological organism senses this oscillator 

or makes use of its periods can be given at present. 

ATOMIC GRAVITATIONAL CLOCKS 

The existence of a fundamental temporal bound associated 

with gravitating bodies has long been recognized in physics 

and astronomy. This bound is. the minimum period, ~ = 2,rR3/ 2 //GM, 

given in terms of a body's mass Mand radius R with the 

dimensionality of time. It represents the circular velocity at 
------. r--.... 

the surface of the Body and is a minimum period both in the sense 

that no satellite orbiting the body can have a smaller orbital 

i 

"".""""'"~~..---:--...,.,_..,...,....,.,.._...,,....,,..,_~..._...--.,....,,.,,,-.,....,.............,..,-.....,,_.,...,.,_......,...,._,,,..,.~.,..._,...;..._..,.,.__,,.._,.........,.,.___.......,...__,.1 
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period than i and the body itself cannot have a period of 

rotation less than¥ and remain gravitationally stable. The 

period T determines a basic "frequency" that governs dynamical 

behavior in the neighborhood of the gravitating body. For 

example, Kepler's Third Law in terms of¥ is simply: (orbital 

period) = Ct/R312 ) (orbital semi-major axis) 31 2 . In general, it 

might be said that the presence of a gravitating mass establishes 

a local clock that "beats time" for all mechanical movement in 

the neighborhood of the body. 

The minimum period,t, is also called the "Schuster 

Period," and may be expressed in terms of the mean density p 

of the body by, pt 2 = 3TI/G. The value oft for the earth is 

• about 84 minutes, for the sun about 2_ 3/4 hours, and for the 

moon 108 minutes. Assuming a mean density of a galaxy of lo-23 

gm/cm3 , the galactic minimum period is of the order of 108 years, 

about the same as the period of rotation. 

The effect~ of this gravitational clock have·been 

observed in macroscopic scales from planets to the visible 

sample of the universe. There is no theoretical reason these 

gravitational clocks should not also be operative on a micro­

scopic scale, but the manifestation of their effects is 

presumed submerged in the variety of effects resulting from 

the action of other more dominant forces such as Coulomb forces. 

But is this really the case? The elemental binding forces in 

molecules, crystals, and in the mibrocosmos in general, are 

electric. Although structural patterns are determined by 
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-__t_he_se Coulomb forces, which are stronger than_ gravitational 

f b f t S JG 1039.356 th" d t ; _o_!c~_s_ y a ac or _=: _ e _ m me = , is nee no per se 

obscure manifestation of the microcosmic gravitational clock 

whose temporal effects rather than force effects are sought. 

In spite of the entirely negligible role of the gravitational 

force in microscopic structure, it may nonetheless be possible 

that the effects of the gravitational clock of fundamental 

particles are detectable on a macroscopic scale provided (1) 

the basic gravitational period of the atomic clock is quite 

different from the basic electric period of the atomic clock, 

and (2) provided that there is general phase coherence so that 

the intensity of pulse will be augmented by a factor proportional 

• to the number of atoms. 

The atom as an "electric clock" has many frequencies that 

are manifest in optical, X-ray and other spectra. An example 

~fa basic electric frequency associated with the atom is that 

corresponding to the period of orbital revolution of an electron 

in- the first Bohr orbit of a hydrogen atom. This time interval 

~? lo-15 · 81822 seconds, and is equal to 2TTao = 1 where a is 
ac 2cR00 o 

the radius of the first Bohr orbit;a is the fine structure 

p~nstant; c the velocity of light; and Roo, the Rydberg constant. 

The basic gravitational frequency of the hydrogen atom 

will be the frequency corresponding to the minimum period 

" = 2'""a 3/2 T II O 

~ 
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• where mp is the mass of the proton and a
0 

is the first Bohr radius. 

• 

Using the values in Table I (Cohen and DuMond, Rev. Modern 

" . Physics, v. 37, No. 4, Oct. 1965), we obtain for T the first 

value in Table II. The mass values are based on the unified 

1 f t · · h . 12c 12 sea e o a omic weig ts, = . 

It is somewhat surprizing that the combination of 

-23 fundamental constants whose c.g.s. values range from 10 

to 10- 6 define by analogy with macro gravitational relationships 

a basic time period of almost exactly two hours. This 

fundamental gravitational period of the hydrogen atom, which we 

d . t b . 1019 • 6 7 8 .ro t . t th b . may esigna e y TH' is = •~ imes as grea as e asic 

Coulomb period of the hydrogen atom. The value of TH is not 

located on the micro or macro ends of the temporal scale but falls 

in the very range of time periods that are associated with life 

processes. The existence of a ubiquitous oscillator - tne 

hydrogen atom - having a temporal period commensurate with 

astronomical and biological periods susgests that the hydrogen 

atom might possibly play a role of zeitgeber in biological clocks. 

While the quantity T = 2rrR312/ ✓GM has the dimensionality 

of time and TH has an order of magnitude in the right range for 

providing beats useful for biological rythyms, the overriding 

question is beats of what. If it turns out that the T periods 

of atoms are indeed the zeitgebers for biological clocks, then we 

are not only confronted with a basic biological phenomenon, but 

with a physical phenomenon having far reaching revolutionary 

• implications. 
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In addition to the gravitational period, TH' associated 

with the neutral unexcited hydrogen atom, by me~ns of formula 

( ), two other basic gravitational periods may be derived. 

One of these periods that has an order of magnitude suitable for 

temporal regulation of many shorter physiological processes is 

the "electron period" (Te) based on m and r, the mass and • e e 

radius of the electron. The existence of a clock with a pulse 

period of about one-tenth of a second (Table II,second value) 

would be appropriate for calibrating processes such as heart 

beat, optic scanning, etc. 

A third gravitational period is the "nuclear period" 

(T), which is equal to a 3TH (Table II, third value). This n . 
• periodicity may be appropriate for very short physiological 

processes, such as nerve impulses • 

• 
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INTRODUCTION 

One of the products of the jet age has been the increasing 

awareness of the role of the internal 24 hour biological clock 

that regulates many basic human physiological processes. Jet 

travelers, after crossing several time zones in only a few hours 

lapsed time, frequently experience a fatigue or malaise that 

lasts for several days, while travelers making north-south 

1 trips of the same duration do not experience these symptoms • 

This phenomenon is attributable to the effects of a change of 

man's internal clock phase with respect to the phases of some 

2 environmental cycle such as a light-dark, or tidaJ cycle . 

Biological clocks similar to man's also exist in animals. 

For example, bees flown from Paris to America continued to go to 

feeding places on Paris time, showing that they possessed an 

internal 24 hour clock that operated independently of outside 

3 cues • Extensive experiments 4 carried out on animals and 

plants show that there seems to exist internal clocks in all 

bio-organisms that serve either to calibrate or control the life 

rythyms of the organism and its components. 

In addition to the 24 hour period, bio-clocks provide 

signals corresponding to other basic rythyms. The shortest 

of these periods is one and one-half to two hours and is 

observed in both humans and rats 5 . Human bodily activity, both 

sleeping and awake, has an approximate two hour cycle. Stomach 
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6 contractions of hungry rats , rapid eye movement and dreaming 

patterns in humans all show a tw9 hour cycle. Other longer 

bio-periods include the four day oestral and ovulation cycle 

in female rats; seven day cycles of certain illnesses in 

humans 7 ; and an approximate nine day cycle8 • The 28 day 

menstrual cycle is perhaps the best known human bio-rythym, 

but there are still longer periodicities associated with some 

diseases. Illnesses with periods of over 10 years have been 

recorded9 • 

It is to be noted that many of the basic biological 

rythyms are nearly synchronous with important geophysical 

cycles -- such as the 24 hour solar day or 28 day lunar cycle. 

This suggests that the external period force-drives the 

osci~lations of the bio-clock through the action of a periodic 

signal in some physical parameter such as temperature, light 

intensity, or pressure (a tidal effect). However, experimentally 

~ontrolled elimination of variations in the intensity of known 

physical signals (such as light intensity10 , show that 

whatever the period, the clocks seem to be able to operate 

independently of external factors. One exception to this, of 

course, is gravity. The minute fluctuations in the gravitational 

pulls of the sun (24 hours) and moon (24 hours-SO minutes) cannot 

be eliminated in the laboratory. But since not all bio-rythyms 

are commensurate with geophysical cycles, it appears that the 

basic oscillator providing time signals to bio-clocks is endogenous 

and is capable of independently producing uniform self-sustained 

oscillations like the crystal in a crystal controlled clock. 



• 

• 

• 

AGW 3 

A further important property of the bio-clocks is their 

apparent universal accessibility to all living organisms even 

down to single cells. The 24 hour clock, for example, is known 

to be present in man, mammals, plants, and in the unicellular 

11 organisms Euglena 

Before attempting a theory of bio-clocks, we should remind 

ourselves that the definition and measurement of time ultimately 

depend on some cyclical phenomenon. Our units of time are 

defined in terms of a periodic motion such as the earth's rotation 

or annual motion, or in terms of electromagnetic vibrations. 

All clocks require for.their operation and calibration a basic 

periodic signal such as provided by a pendulum, a piezzo 

electric crystal, a multivibrator, or molecular vibrations. 

Although both in physics and psychology we have the concept of a 

"linear flow of time" and usually represent time as a uniformly 

increasing variable, operationally time must be derived from some 

periodicity. It is reasonable to .surmise that biological clocks, 

like other clocks must contain an oscillator that supplies energy 

or information having periodic components. A name frequently 

given to this oscillat9r is zeitgeber or "time giver." The signals 

provided by the zeitgeber can be sensed by the organism and used 

either to calibrate or to control physiological processes. 

A list of the conditions which must be satisfied by any 

model of the zeitgeber includes: 

1) Zeitgebers must be endogenous, i.e., capable of auto­

generation of constant frequency time signals. 
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2) Zeitgebers must be containable, and perhaps actually 

contained in every living cell. 

3) The source of the basic oscillations must be able to 

produce in a consistent and systematic manner frequencies with 

quantitative correspondence to all of the observed 

bio-rythyms including the sub-set corresponding to the 

common geophysical cycles of the bio-environment. 

4) The model should be based on known physical principles 

and concepts. 

In this paper a model of zeitgebers satisfying these 

prescriptions is proposed. It is an endogenous physical oscillator 

present in all matter and possessing periods corresponding to 

the basic biological and environmental cycles. Though based on 

known physical concepts neither the exact nature of the zeitgeber's 

pulse nor how a bio-organism senses or makes use of the pulse can 

be deduced at present. To meet this deficiency, some implications 

and · further requirements of the proposed hypothesis are developed . 
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ELEMENTAL GRAVITATIONAL CLOCKS 

Condition 2), that the zeitgebers be a possible component 

of every living cell su~gests the hypothesis that the basic 

oscillator is associated with one of the vibrations characteristic 

of individual molecules or atoms. If the biological clock 

within a cell in some way can sense, amplify, and transmit the 

time signals taken from oscillations generated by elemental 

particles, conditions 1), 2), and 4) that zeitgebers must satisfy 

would be met. However, the crucial condition for any hypothesis 

is 3). The most stringent requirement on any model of a 

zeitgeber is the ability to generate time signals with those 

periods and one might require only those periods -- that 

have values equal to the values of the various observed periods 

of bio-rythyms. The first hurdle, therefore, for a zeitgeber 

model is the ability to generate independently of outside factors 

time signals with periods of two hours, 24 hours, four days, 

seven days, 28 days, and other periods that have been observed 

in both healthy and diseased organisms. 

Atoms and molecules possess many characteristic frequencies. 

Most of these are well-known from studies of X-ray, optical, IR 

and other spectra. These frequencies are too•high, however, to be 

of any use in generating time signals with periods such as two 

hours or one day. For example, the precession frequency of Ce 133 

that is used for the "Cesium Clock" has a vaiue of 9,192,631,770 

• cycles/second. The basic frequency of the hydrogen atom, that 

r ,, -•· 
:, _:; I • 

vi 
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corresponding to the period of orbital revolution of an electron 

. th f' t B h b't f h d t · 1·0-15 • 81822 d in e irs or or 1 o a y rogen a om, is · secon s. 

This frequency is equal to 

the first Bohr orbit; a is 

2Tiao = 1 where a is the radius 
cic 2cRoo 0 

the fine structure constant; c the 

velocity of light; and Roo, the Rydberg constant. These 

frequencies are "electric frequencies" and derive from the 

Coulomb forces that govern atomic and molecular structure. 

of 

Condition 3) cannot be satisfied by characteristic electric 

periods of atoms or molecules. However, there are other periods of 

time theoretically associated with all elemental particles and 

therefore satisfying conditions 1), 2), and 4). These are time 

intervals associated with mass rather than charge, with 

gravitational rather than Coulomb forces. 

The existence of a fundamental temporal bound associated 

with gravitating bodies has long been recognized in physics and 

astronomy. This bound is the minimum period, 

given in terms of a body's mass Mand radius R with G being the 

Newtonian gravitational constant. It corresponds to the circular 

velocity at the surface of the body and is a minimum period both 

in the sense that no satellite. orbiting the body can have a 

smaller ~rbital period than\ and the body itself cannot have a 

period of rotation less than t and remain gravitationally stable . 
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~!le period ~ determines _a basic "frequency" that governs dynamical 

behavior in the neighborhood of the gravitating body. For example, 

Kepler's Third Law in terms off is simply: (orbital period) = 

( b . t 1 . . . ) 3/2 or i a semi-maJor axis . In the above sense it 

may be said that the gravitational field associated with any mass 

establishes a local clock that provides time signals for the 

dynamical motions in the neighborhood of the body. 

The minimum period,{, also called the "Schuster Period," 

may be expressed in terms of the mean density p of the body by, 

p~ 2 = 3TI/G. Some approximate values of¥ are: for the earth 

84 minutes, for the moon 108 minutes, and for the sun 2 3/4 hours; 

-23 3 ~ssuming a mean density of the milky way of 10 . gm/cm, the 

•. galactic minimum period is of the order of 108 years or about 

the same as its period of rotation. 

• 

Since the effects of this gravitational clock have been 

observed on the cosmic end of the time scale from planets to the 

largest known aggregates of matter in the universe, we may 

logically ask: are gravitational clocks also operative on a micro­

cosmic scale? Theoretically, the. gravitational clock should be 

universal, associated with all matter, whatever its mass. The 

Schwarzschild solution to the field equations of general 

relativity establishes for all masses having spherical symmetry the 

relation (R R 2;R3 ) = k, a constant that depends on the density 
S C 

. / 2 
distribution; where R is the Schwarzschild radius( 2GM/c·; and s I 

R 
-C 

is the radius of curvature of space-time at the coo rd in ate . 

distance R from the center of the body (R > the physical radius). 
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From this relation it is seen that a local time period is defined 

by the ratio of the local curvature of space to the velocity of 

propagation of light and that this period is inversely 

proportional to the square root of the mean density of matter 

within the coordinate distance R. Hence a gravitational period 

equal tot if the constant of proportionality is 8TT 2 -- should 

exist in the neighborhood of all masses regardless of the 

magnitude of the mass or of the spatial scale of the material 

•. aggregate involved. 

• 
if)(, hf.,_., 

It is usually assumed that microcosmic gravi tationa_l 

effects are submerged in the variety of effects resulting from 

the action of other dominating forces such as Coulomb forces. The 

binding forces in molecules, crystals, and in microcosmic structures 

in general, are electric forces which are stronger than 

·gravitational forces by a factor S = e2 /Gm m = 1039 • 356 where e p e 

is the charge on the electron, m the mass of the proton and m the p e 

mass of the electron. The fact that microcosmic structural patterns 

are determined by electric forces need pot per se obscure macroscopic 

manifestation of the existence of microcosmic gravitational clocks 

where temporal effects rather than force effects are involved. 

In spite of the negligible role played by gravitational force 

in_microscopic structures, it may nonetheless be possible that the 
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that the temporal effects of microcosmic gravitational clocks of 

fundamental masses are detectable on a macroscopic scale provided 

some condition holds such as that there be sufficient phase 

coherence among the periodic atomic gravitational signals that 

they not be lost in summation over random phases. 

The basic gravitational frequency of the hydrogen atom 

will be the frequency corresponding to the minimum period, 

12 v Using the values in Table I , we obtain for T the first value 

in Table II, 2hOm4/8 • The mass values are based on the unified 

scale of atomic weights, 12c = 12. 

It is surprising that the combination of fundamenta·l 

-23 -6 constants whose c.g.s. values range from 10 to 10 define in 

accordance with universal gravitational relationships a basic time 

period for the hydrogen atom of almost precisely two hours. This 

fundamental gravitational period of the hydrogen atom, which we may 

d · b · 1019 · 678 'st· t th b . esignate y TH' is or v~ imes as grea as e asic 

Coulomb period of the hydrogen atom defined above. The value of 

TH not being located on the micro or cosmic ends of the temporal 

scale but falling in the very range of time periods that are 

characteristic of life processes suggests that basic gravitational . . . 

periods may be the clue to satisfying condition 3). rhe existence 

• of a ubiquitous self-contained oscillator -- the hydrogen atom -­

having a temporal period equal to the shortest observed bio-rythym 
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and biological periods suggests that the hydrogen atom might be 

one of the zeitgebers supplying time signals for.biological clocks. 

In addition to the gravitational period, TH' associated 

with the neutral unexcited hydrogen atom, two other basic 

gravitational periods that may be calculated by means of Eq. (1) 

should be mentioned here. One of these having an order of magnitude 

suitable for temporal regulation of many shorter physiological 

processes is the "electron period" (Te) based on me and re, the 

mass and radius of the electron (Table II, second value). 

Harmonics of a clock with a pulse period of about one-tenth of a 

second would be appropriate, for calibrating such processes as 

heart beat and breathing while the fundamental has a period 

• closely equal to that of the slowest a-waves in the brain (1/8 sec.). 

• 

For completeness, a third gravitational period, the "nuclear 

period" (T ), is included (Table II, third value), being taken n 

equal to a 3 TH. 

At this point in the development we recognize two 

important questions raised by the hypothesis that gravity 

associated with elemental masses is generating time signals. 

The first question has to do with the "addition" of time 

signals. If periodic gravitational effects are associated with all 

masses, how are the basic periods and phases to be combined when 

masses are grouped in larger aggregates. This question will be 

taken up in the next section • 
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A second and even more basic question, concerns the 

physical nature of the time signals themselves. For certain 

quantitative purposes, such as meeting condition 3), we may 

speak simply of time signals and concern ourselves with the values 

of their periods without inquiry into their other physical 

properties. We may reasonable'take the minimum or Schuster period 

as a fundamental time period associated with all mass. But if 

gravitation has periodicities, if there are time signals, we 

must inquire: periodicities and t±me signals in what. Success 

in satisfying conditions 1), 2), and 3), has now re-opened 

condition 4). .There now appears to be not only a biological 

phenomenon to be modeled, but also a physical phenomenon. This 

•. general question will returned to in section 4 . 

• 
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TABLE 
---~-·-· 

I -1 
Quantity Value loglO 

• ao 5.29167 X l0-9crn - 8.276407 

6.670 X 
-8 7.175874 G 10 c.g.s. - ; 

mp 1.67252 X lo-24grn -23.776629 l 
me 9.10908 X 10-28grn -27.040525 ! 

re 2.81777 X lo-13 crn -12.550094 
-···-----

Cl 7.29720 X 10-3 - 2.136844 

• 
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-0.918761 I 0.120570 I me r l e 

-2.550770 I 0.00281339 
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While these relatively weak gravitational forces play no 

primary role in determining microscopic structural patterns, 

they may in some sense afford a minute perturbation in these 

structures. For example, a dimensional argument states that 

two forces (dimensionality [ML/T2]), operating on the same 

masses over the same linear distances, as for example on atomic 

or molecular masses over atomic spacings, would possess temporal 

effects inversely proportional to the square root of the ratio 

between the magnitude of the forces. In the case of Coulomb 

and_ gravitational forces, the ratio of temporal effects should 

then be s-112 ; that is, characteristic times associated with 

gravitational forces should be 1019 · 678 times as great as those 

• associated with Coulomb forces. A hypothetical pertubative 

effect due to the operation of gra~itational force in the 

hydrogen atom would accordingly have a basic period of 1019 · 678 

• 

-15 818 3 860 d · · 1 44 d x 10 · = 10 · secon s. This is equa to 72 secon s 

or 2h Om 44s. This value is of the right order of magnitude 

for the period of a basic oscillator useful in providing time 

signals for various bio-rhythms. Furthermore, its near 

commensurability with 24h Om Os suggests it may indeed play 

some role in the oscillator mechanism for an endogenous 

circadian clock . 
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THE GRAVITATIONAL CLOCKS OF CHE.MICAL ELEMENTS 

The combining question may be formulated as follows: 

If there exists a fundamental time period associated with every 

mass, then when elemental masses are combined in aggregates whose 

structure is determined by nuclear, Coulomb, or gravitational 

forces, how is the_ gravitational period of the aggregate mass 

related to the gravitational periods of the constituent particles. 

Cosmic bodies are held together by combinations of 

electric and_ gravitational forces. Their masses and sizes appear 

in most cases to lie within limits imposed by two types of bound: 

a bound on density and a bound on potential. While the aggregate 

mass is always closely equal to the sum of the masses of the 

constituent particles, the size of an aggregate may depend on 

mass in many ways. In an aggregate of N particles that is 

density bounded, the aggregate radius is equal to 3 /N times the 

elemental radius. This leads to the equality of the aggregate and 

elemental gravitational periods. An aggregate of N particles 

subject to a bounded potential, on the other hand, requires that 

the aggregate radius be N times the elemental radius. This leads 

to densities inversely proportional to N2 and ~o aggregate 

periods equal to N times the elemental period. Solid cosmic 

bodies such as planets are examples of the first type of size­

mass relation; clusters, galaxies, clusters of_ galaxies are 

examples of the second type. Stars occur at the intersection of 

• the density and potential limits and are structured according to 

both types of bou.nd. 
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For the purpose of deriving the_ gravitational periods of 

heavier atoms, which of the two limiting types of combining of 

heavy nuclei from nucleons, if either, is applicable? This is 

not known a priori, but if we assume that atoms belong to the 

species of bodies that follow a bounded potential form of 

compounding, we are led to gravitational periods that correspond 

to observed macrocosmic rhythms. 

For the hydrogen atom the gravitational potential is 

given by 

,. I 

Assuming this value of potential to hold for all atoms, we have 

= a
0 

A where rA is a tlgravity radius" and A is the 
mp 

atomic weight of the atom; A and m being in the same units. The p 

gravitational period for an atom of atomic weight A then becomes 

TA= 2TirA3/2 = 2Tiao3/2 A= 
·--
/GA /Gmprrip 

In the unified system of atomic weights, 
12c = 12, the proton 

• mass, mp= 1.00727663. Hence, 



• 

• 

• 

(2) -rA(seconds) - 7241. 3"675 (A} .= 

1.00727663 
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7189. 0554 (A}. 

For example, for carbon 12, by Eq. (2} the value of TA becomes 

23h 57m 48s.7. The proximity of this atomic gravitational period 

with the earth's 24 hour period suggests that the carbon atom may 

ineeed be the zeitgeber for the circadian rhythms in most living 

organisms. 

There are several uncertainties in the definitions of the 

various gravitational periods that lead to slightly different 

values. For example, the use of the mass of the hydrogen atom, 

~, instead of the proton mass, mp, in Eq. (1), leads to 

approximately a two second difference in the basic period of the 

hm s . hm s hydrogen atom, 2 0 39 (mH) as against 2 O 41 (mp). For 

·h 
the carbon 12 isotope, this difference becomes larger, 23 56m 

38s.2 (mH) as against 23h 57m 48s.7 (mp). The former value is 

quite close to the earth's rotation period of 23h 56m 4s.099. 

In addition to uncertainty regarding the correct choice of mass 

for the basic unit, it must be remembered that the choice of 

base for the scale of atomic weights is arbitrary. This also 

affects the values of the periods. For example, using the 

previously adopted physical scale of O = 16.0000, in which the 

mass of the proton is 1.007593 and the weight of carbon 12.011, 

the carbon period is 23h 58m 40s.7, (rn} as against a period of p 

23h 59m 8 5 .9, (m) for carbon= 12.01115 on the unified scale. 
p 
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At this st~ge the question of higher precision is 

premature. After all the term: ·c-ir·c·a"d"i•an means only ''around one 

day" and adequately describes the precision of our present 

knowledge of bio-rhythrns. Translated into longitude differences, 
?, 

the uncertainties in periods corraspond to two or three miles at 

temperate latitudes. There have been no observed bio-clock 

responses to local east-west movements of organisms of this 

order. However, the relatively small differences introduced by 

the choice of (mH) or (mp) or of the base for the scale of 

atomic weights may later prove important in the identification 

of the correct resonances between chemical and environmental 

• periods. It may be important, for example, to decide between 

• 

a sidereal and a solar period resonance. It might even someday 

prove useful to have a scale of atomic weights, based on one of 

these 24 hour periods. 

While carbon is the fundamental element in living matter 

and the carbon clock may be expected ·to be the most important, 

other elements also are omnipresent in life processes and their 

clocks may either directly or through resonance periods with 

=the -carbon clock provide t·ime signals for other bio-rhythms. 

Living matter is composed primarily of Carbon, Oxygen, 

Nitrogen, and Hydrogen. For example, in the human body about 

96% of the mass is distributed among these four elements. In 

Table III are_ given the fundamental_ gravitational periods of 

these basic organic elements as derived from Eq. (2), based on 



• 
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(m) and the unified scale. p 
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In part A of Table III, the gravitational J?eriods are 

derived for the most abundant isotopes: Carbon 12, 98.89%; 
l~ 

Nitrogen 14, 99.63%; and oxygen, 99.76%. In part B of the 

table, the atomic weights used are not of particular isotopes 

but of the naturally occurring abundancies of all stable isotopes. 

The periods of other chemical elements and isotopes may be 

derived in a similar manner from Eq. (2). 

It cannot be determined at the present whether the 

zeitgeber is a single atom or is the combined effect of many atoms 

whose signals are in phase. Under the first assumption, the 

values in Table III-A would obtain;under the second assumption, 

the values in Table III-B would be the meaningful ones to 

adopt (subject, of course, to the choice of the scale of-atomic 

weights and (mp) or (mH) as the correct mass). In first 

approximation we may round off the values to Carbon, 24 hours, 

Nitrogen 28 hours, and Oxygen 32 hours, the errors being but a 

minute or two . 



• 
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- -

Isotope Atomic Wt. 
(Unif.Scale) 

,.-...,~::~--·-

12c 12.00000 
.,.,_,_, ... _,.--.---~-,,...-•.,.:-... ..-, -~ ... -~ .. --.... -... ~- , .... ,_..,,~~-

14N 14.00307 
---

160 15.99491 

·----"'-"" ! ---
Element Atomic Wt. 

I 
! 

l 
l 

TABLE III 

Part A 

loglO T sec 

_ ... :----..---
4.935853 

·---, 

5.002895 

5.060654 

Part B 

log10 -r sec 
_,,,~/,_..._....,___, .. ,..E(C ... ___ .. .,_-,. _.............,=-r..,....:,,a...,,"'JdO...,,,n,o,.~•-.. -·--·---
Carbon 12.01115 4.936256 

Nitrogen 14.0067 5.003008 
···~---· ···------.. --.......... - __ ..., .. 
Oxygen 15~::___l· 06077~ ___ ,_,_. 

T sec I Equ-ivalent 

86268.66 23h57m48s.66 
--- __ .... ___ ..._., _____ ,, ___ - --

100668.85 27h57m48s.85 

114988.29 3lh56m28s 29 

T sec Equivalent 

86348.82 23h59m8s.82 

100694.94 27h58ml4s.94 

115020.57 3lh57m0s.57 
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RESONANT PERIODS 

The hypothesis of elemental_ gravitational clocks 

structured under the condition that the gravitational potential 

remains constant, leads for all elements to the proportionality 

of the period and the atomic weight of the element. Explicitly, 

from Eq. (2) 

If for a pair of periods TA' TA, associated with two different 
l 2 

elements, we can expect that beat type phenomena usually 

associated with oscillations will be present, then the synodic 

or resonance period, T, of two elements with atomic weights A1, 

and A2 will be 

For the elements in Table III-A, to errors of less than three 

parts in ten thousand, the atomic weight A may be replaced by 

the nearest integer [A] . S_ince TH/mp very closely equals two 

hours, we may then write 

(3) 
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The resonant periods by pair$ a.mo!lg the basic organic 

elements, c, H, o, N, derived from Eq. (3), are_ given in 

Table IV. The carbon-nitrogen resonance is exactly seven days, 

the carbon-oxygen is four days, and the nitrogen-oxygen is nine 

and one-third days. In addition, these elements have a triple 

resonance of exactly 28 days, long recognized as a very funda­

mental bio-period. 

It is of extreme interest that the four elements composing 

over 95% of organic material have a gravitational resonance 

period equal to a period that has been observed to play so 

important a role in life processes, both plant and animal. But 

it is most remarkable that this period nearly coincides with the 

• sidereal period of the moon of 27.322 days (synodical month, 

• 

new moon to new moon= 29.531 days). The periodic simil~rity 

between many life processes and the phases of the moon is well 

established but it has always been troublesome that a causal 

linkage has not been discovered. We may now say that there 

exist no "astrological" linkages. There is nothing causal 

between the moon and the life rhythms, the illusory linkage 

results from the coincidence of the lunar period and the organic 

elements resonance period. The endogenous chemical clocks can 

account for the observed 28 day rhythms without invoking the 

moon, just as the endogenous carbon clock can account for 

circadian rhythms without invoking the sun . 
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There may well be environmental..,., chem;ical resonances 

and the relative role of environmental clocks to endogenous 

clocks must be explored. But we at least have been able to 

provide a mechanism satisfying those observations that demand 

an end~genous source of time signals corresponding to observed 

rhythms and capable of independence of environmental clocks. 

The phenomena of the coincidences of the periods of the 

chemical clocks and environmental clocks must not be ascribed 

to chance. There are too many "coincidences" (more to be 

developed later). It is most logical to assume that the 

elemental_ gravitational chemical clocks provide not only signals 

for regulating the rhythms in bio-organisms but also play a 

• role in the morphogenesis of cosmic bodies. The cos~ic periods 

also derive from the elemental gravitational clocks. We thus 

have the elemental gravitational clocks as a "first cause." Both 

bio-clocks and cosmic clocks derive their characteristic periods 

from the basic clocks. The observed coincidences of· periods led 

to the surmises of astrology, but the causal linkage is not be­

tween the heavenly bodies and the affairs of man, but both the 

motions of the heavenly bodies and the rhythms of life spring 

from the common cause of the elemental gravitational clock . 

• 
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• TABLE ILL 

1 t 
I . I 

E emen Atomic Wt. i 
(Unif. Scale) i 

l~g10 -r sec I ,: sec Equivalent 

Hydrogen : 1. 00727663 ! 3. 859821 7241. 37 2hom41 s. 37 

=i~_o_--n_~:1 __ 1_5 __ -. __ 4_._9_3 6_2 __ 5_6 ____ :~~~~~~!:~~~~~--: _____ ---~?_h_5 __ 9_m_8_s_. ~.: __ _j 
Oxygen 15.9994 5.060776 115020.57 3lh57m0s.57 \ 

-----------1-----·---·-------·-------•····-~ 
100694.94 27h58ml4s.94 

I 
Nitrogen 14.0067 5.003008 

• 

• 
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TABLE IV 

Resonant Periods of C, H, O, N ·-·~-·. ----r 
Hydrogen : Carbon Nitrogen Oxygen 

H I 2h1om54s_54 2h9ml3 5 .85 2h am o5 

., __ ,,,,,.... ..... ------·----·-+-! ---------:---------+---------l 
C 

1 
168h = 7d 96h = 4d 

' ;•, ' ' ... ,.,..,_"l<'S .· 1.("....:~.....:i,. ___,._...,,..J,, ' ~ ........ ~-:"> ' •• ~ •' - .. -~---· .. ,_,_ .. , ... , .. _ ...... ~., ... ..,., ........ _,_,,rot"_•~·-~-

~~.~---.,.~, .. ~•--~~~,¥-~~•.-.-•~~-,,-•~~~, ... ,~,·~ = •••-·~~--~~-·""! .... r•.•• , ... ·· .. ~•" •· ·. , -~,•~=-~~·••=v .. ·:,...,:.~~-~ 
o I 

,.._. .. ~- -- ·-·· .. , .. -·---~-,,~---.~J ... ~--------

• 

• 
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However, the 24 hour clocks 

of astronauts and cosmonauts seem to operate effectively in 

earth satellite orbits. Since the response of the orbiting 

vehicle to all gravitational fields is such as to neutralize 

for the astronauts any residual external_ gravitational signals, 

it appears that the zeitgebers operate indep.endently of all 

external influences . 
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ROTGRAV.W52 DISK:TIME February 17, 1994 

SYNCHRONIZATION Of THE EARTH'S ROTATIONAL 
AND 6:RA\/ITATIONAL PERIODS er ~i:/ i{3 

11 IT 
# St/ 

Four basic periods are associated with the earth: The revolution 
period of one year, the lunation period of one month, the 
rotation period of one day, and the gravitational (or 
Schuster)period of 84 minutes/plus a few secondsL Since these 
various periods have no simple integral multiples, there is the 
problem of commensuration, or finding the simplest ratios of 
their values. For example, since ancient times solutions to the 
problem of when the full moon will occur on the same calendric 
date have been sought. One answer was the Metonic Cycle of 235 
lunations = 19 years. (235 synodical months= 6939.6882 days, 
while 19 years= 6939.6018 days, the difference being 2h 4m 24s) 
In the western hemisphere, the Mayans found that 81 moons= 2392 
days before the moon appeared in the sky at the same phase at the 
same time. 

The same problem arises in determining the synchronization of the 
mean solar day with the earth's G-period. To a first 
approximation the G-period of the earth is 84 minutes. This value 
synchronizes exactly with the 24 hour rotation period of the 
earth every seven days. That is 120 x 84 minutes= 7 x 24 x 60 
minutes= 10080 minutes. Is it possible that this first 
approximation to G-period solar day synchronization could be the 
basis of the week? The question arising here is in what manner 
did ancient humans sense the G-period. 

But the value of the G-period is not exactly 84 minutes. Using 
the present most probable value for the earth's density of 5.517 
± 0.004 gm/cm3

, the G-period is about 84 minutes and 19.61 ± 1.83 
seconds. This means that there is not precise synchronization 
every seven days, but there is an error of approximately 120 x 20 
= 2400 seconds (40 minutes)each week. This value is approximately 
half a G-period, so we would expect a better approximation to be 
a fortnight. Actually a minimum synchronization error of 33.4 
seconds occurs in 13 days. But this error is accumulative so an 
exact synchronization, if any, will occur only at some much 
longer period. 

To find synchronization periods it is necessary to solve the 
Diophantine equation 

N1 x CYCLE 1 = N2 x CYCLE2 

where N1 and N2 are integers. For the choice of cycles, G-period 
and day, we get the following table: 

- ,"\R. fv/.q,'11,f'{\(/ 
UJf._4. or 

w-&k. 
o/ 13 
-Lri 
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COSCLOCK.P51 DISK:COSNUMBERS 

III, GRAVITATIONAL CLOCKS 
A. G. WILSON 06/11/68 

May 8, 1991 

The Schwarzschild solution to the field equations of general 
relativity establishes for all physical bodies the relation 

( 1) Rs R//R3 = constant 

between Rs, the Schwarzschild or gravitational radius of the body, 
Re, the local radius of curvature of space, and R the physical or 
metric radius (Ref. 1). 

This expression implies the existence of a fundamental time 
period associated with every physical body. Substituting 2GM/c2 

for Rs gives, 

This local basic time period, T, is seen to be proportional to the 
ratio of the local radius of curvature of space to the velocity of 
light. The universal validity of Equation (1) infers the existence 
of a local characteristic time period associated with the local 
curvature of space. This provides a ''gravitational clock" which 
governs the dynamical motions of all cosmic bodies . 

If the constant k is taken to be 8n2
, the basic period T 

becomes equal to the minimum gravitational period, Lr associated 
with gravitating bodies. This period, 

(2) 

sometimes called the ''Schuster Period", is the well known limiting 
minimum period for bodies orbiting about a spherical mass M of 
radius R. Equation (1) also is the limiting rotation period for a 
gravitating body with dynamic stability. 

Although for small distances the effects of gravitational 
forces are negligible with respect to other forces (Coulomb 
forces, for example, are 10 40 times greater than gravitational 
forces), Is it possible to detect the presence of the 
gravitational clock of small fundamental masses such as atoms and 
elementary particles? Certainly it is not possible to detect the 
gravitational force effects associated with these entities whose 
structure is overwhelmingly determined by coulomb, strong and weak 
forces, but it still may be possible to detect the temporal 
effects of the gravitational clock especially if the basic 
gravitation periods are markedly different from the coulomb 
periods associated with the atom . 
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ON CHON S-ee c;,lsa /993 :#- 38 

AND THE BOUNDARIES OF TIME 

Aristotle held that time was an inference of motion. But there 
appears to be a species of time that is not derived from motion. 
This time is associated with density and manifests itself as a 
bound to allowable periods and frequencies. A familiar example is 
the Schuster Period, a bound on the period of an earth orbiting 
satellite when only gravitational and inertial forces are acting. 
This period of approximately 84 minutes is numerically related to 
the mean density of the earth and to the universal gravitational 
constant,G. In general the lower limit to orbiting periods is 
given by, 

(1) 

Where Risa size parameter (radius) and Mis a mass parameter. 
For a spherical body, this boundary time, 1, in terms of the 
mean density p, is given by, 

(2) 

These equations govern gravitationally based temporal boundaries 
and are usually applied to astronomical bodies. Since gravity is 
a force weaker than the other forces by some 40 orders of 
magnitude, it seems quite inappropriate that these boundaries 
have any meaning for bodies where gravity plays an insignificant 
role, in particular on meso and micro levels. However, there is 
nothing known that precludes their universal applicability. We 
therefore make the assumption: 

Assumption 1] Equations 1) and 2) may be applied to any entity 
occupying space and possessing a definite mass. 

When applied to objects on the atomic level at first thought it 
would seem the results would be insignificant, but we are dealing 
with time, not force, and some surprising values emerge. 

Taking for size the Bohr radius, a 0 , and for mass, mp, the mass 
of a proton, the time 1H, turns out to be almost exactly 2 hours! 

(3) ,.=2rr~ = 7239.94sec 

tM-l /VVl /-1 t\, I J f ifv'j:, 
C . ]... ('...CC 
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The general theory of relativity predicts that the rate at which a clock runs varies as 
the strength of the gravitational field at the location of the clock. The stronger the field, the 
slower the clock rate. An atom in a strong gravitational field, for example, will radiate at a 
lower frequency than the same atom in a weak field. This is manifested as the gravitational 
red shift. If we designate the period of time that increases with gravitational field strength by 
T, and the field MIR by <I>, then T = T( <I>) such that if <I> increases T will increase. 

On the other hand the time that we designate by r which is proportional to p-112
, 

varies as R/V<I>, decreasing as <I> increases. If Tis the basic period operating in a 
gravitational field of strength <I>, how is r to be interpreted? What sort of time does r 
measure? If atoms march to T, what marches tor? T may be a "bridge time" between 
photons and hadrons, while r governs the time table for larger material bodies. X' 

The properties of both T and r have been observationally confirmed. T through 
comparisons of clock rates at different terrestrial field strengths and r through planetary and 
binary star motions. And from the above with one time increa~g.wl.th___£eld strength and the 
other decreasing, we must conclude that there are at least tw~~~~J!-P Jcinds of time. 

Recent observational determinations of Hubble's parameter have led to an age of the 
universe that is less than the age of oldest stars. This paradox possibly has its resolution in 
the existence of different times. In the region of star formation the density is large and 
therefore r is small. If star formation marches to a local r rather than to a global T, then as 
viewed locally, there would be ample time for the evolution of the stars, even though the 
observer's clock suggests a paradox. The entire matter hinges on the proper interpretation of 
the time r. -c- ,,r 

Q. 0 -i~ 

r.,,,,., a~ s,,,./v /r {/ 4-/ I 'I;, 

--ic.E Te 

1:: 

I T ,:~ c_,:91,, v<-u;-e Q f P 

J,vufrf ikrfl'l/¼ f? 
7 

1(.2:} cJ l1 C1/1,, U. ,. 

'~ IA-r d!'lfl'.y-c&vl..p c:I /Iv .14'hl-G.,_ 1Sc4v.rl-t-, Oet1t/1'fc,,, \ f1 ,11/1-Vl ~ 
Sul;,_-17 011/rr'J,p&f;t,1~ Iv ·11v cd/q/.,-rfi~ 1{ lfv- u- ✓ :I .~/ h.,_,U<./ T 

~ <!Ji f i f 1' ! · !Jr a rt bell, ~ e h4,, %- 1 ;z,, -c-fe )7 eh/'&:.{_/- } 

(!)v wAd r".r fA-ti'r f2fr1, Jt-.g,,i,,.,r I l'P!~lr'if'l.r ,
1 
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COSCLOCK.P51 DISK:COSNUMBERS 

III, GRAVITATIONAL CLOCKS 
A.G. WILSON 06/11/68 

May 8, 1991 

The Schwarzschild solution to the field equations of general 
relativity establishes for all physical bodies the relation 

( 1) R5 R/ /R3 = constant 

between Rs, the Schwarzschild or gravitational radius of the body, 
Re, the local radius of curvature of space, and R the physical or 
metric radius (Ref. 1). 

This expression implies the existence of a fundamental time 
period associated with every physical body. Substituting 2GM/c2 

for Rs gives, 

This local basic time period, T, is seen to be proportional to the 
ratio of the local radius of curvature of space to the velocity of 
light. The universal validity of Equation (1) infers the existence 
of a local characteristic time period associated with the local 
curvature of space. This provides a "gravitational clock" which 
governs the dynamical motions of all cosmic bodies . 

If the constant k is taken to be 8rr2
, the basic period T 

becomes equal to the minimum gravitational period, T, associated 
with gravitating bodies. This period, 

( 2) T 2 = 4rr2 R3 /GM, 

sometimes called the "Schuster Period", is the well known limiting 
minimum period for bodies orbiting about a spherical mass M of 
radius R. Equation (1) also is the limiting rotation period for a 
gravitating body with dynamic stability. 

Although for small distances the effects of gravitational 
forces are negligible with respect to other forces (Coulomb 
forces, for example, are 1040 times greater than gravitational 
forces), Is it possible to detect the presence of the gravita­
tional clock of small fundamental masses such as atoms and 
elementary particles? Certainly it is not possible to detect the 
gravitational force effects associated with these entities whose 
structure is overwhelmingly determined by coulomb, strong and weak 
forces, but it still may be possible to detect the temporal 
effects of the gravitational clock especially if the basic 
gravitation periods are markedly different from the coulomb 
periods associated with the atom . 
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MORE ON GRAVITATIONAL TIME 

Since Aristotle our physical notions of time have been derived primarily from motion. 
This is true of Newton's contributions to the subject and also of Einstein's (up through 
special relativity). However, Newton's modification of Kepler's Third Law including the role 
of mass, introduced a notion of time based on the density of matter rather than derived from 
motion. Specifically, 

""[ = 2IIR 312 

/GM 
or "I = ~ ~~ 

where r is the time period associated with a domain of radius R and of mass M, (here 
assumed to be spherical), and p is the mean density within the domain, G being the 
gravitational constant. In these two equations motion is not explicitly present. The period of 
the "beat of the clock" is determined by the density of the system. This is a gravitational 
clock, time being manifested as a result of the presence of matter rather than the motion of 
matter. 0v V1.<Ut",j 

The current Big Bang Theory of the origin of the universe, tells us that the universe 
came into being with a high density concentration of energy which immediately began to 
expand. Very quickly, through the appearance of particles, the universe acquired mass. 
While the size of the universe continues to increase, whether mass is bounded or still 
increasing is uncertain. In either event, the mean density seems to be decreasing. But before 
we can effectively discuss changes in size, mass, density, clock rate, etc. we have to be clear 
on the meaning of our units. The problem is like the problem of comparing purchasing 
power over the years in inflationary economics. One has to convert earlier dollars to today's 
dollars, today's wages, etc. in order to obtain meaningful comparisons. 

If we assume that the fundamental physical constants, G, c, and h, are really constant, 
(G=Newton's gravitational constant, c=the velocity of light, h=Planck's constant), then we 
are provided with "absolute" units of extension, mass, and duration. Explicitly, 

R = ~h 
p 3 ' 

C 

M = ~ 
p ~ G' 

Rp, the unit of length has a cgs value of 4.05lxl0-33 cm 
Mp, the unit of mass has a cgs value of 5.456x10-5 g 
Tp, the unit of time has a cgs value of 1.351xl043 sec 

From these we can derive a unit of density, PP = 
with a cgs value of 5.157xl093 g/cm3. 

T = ~ 
p ~~ 



• 

• 

• 

M USP!+ER S, wP D 
UN.EVWAVL:"WPD 0 

MUSIC OF THE SPHERES 

January 2, 2000 

It has been shown that the basic frequency associated with the Hubble universe is 
given by, 

where t0 is the Planck time, Cl is the fine structure constant, µ is the proton/electron 
mass ratio, and Sis the coulomb/gravity force ratio. The wavelength associated with 
this frequency is 

where 10 is the Planck length= 10-32
·
791545 cm. The sizes and masses of various 

objects, from sub-atomic particles to clusters of galaxies, are given as sub-
harmonics in the following table. (Values are log10 ) ; (3m = 2n) cf, ,!J7 fh« 7&rr:,,, ( { ) "'1 

# n (aµS) 0 m Am =(aµSt 10 
M= c2/G }._,m 

cm gm 

1 3/2 60.724434 1 27.932889 56.062236 rJU 
7_ 

6 2 5/4 50.603694 5/6 17.812149 45.941496 

3 6/5 48.579547 4/5 15.788002 43.917349 

4 9/8 45.543324 3/4 12.751779 40.881126 

5 1 40.482955 2/3 · 7.691410 35.820757 

6 9/10 36.434660 3/5 3.643115 31.772456 

7 3/4 30.362217 1/2 -2.429328 25.700019 

8 3/5 24.289773 2/5 -8.501772 19.627575 

9 1/2 20.241477 1/3 -12.550068 15.579261 _: D 

10 0 0 0 -32.791545 -4.662198 

Page 1 
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Notes: 
► The values in the mass column are given by two equations, 

Am c2/G or (cxµS) 0 m
0 

=>> Gm/Amc2 = (cxµS} 0 

► As in music, the even harmonics are repetitive while the odd harmonics 
represent innovations. Thus "octave" :frequencies are not likely to manifest, 
only odd harmonics may support existence. 

► Row 1. The values in this row are those of the Hubble universe. The 
fundamental wave length of 27 .932889 cm is based on the characteristic time 
17.456057 sec which is corresponds to a value of the Hubble parameter of 
71.977 km/sec/mpc. 

► Row 2. One light year= 17.975932 cm. This object is close to 1 l.y. in size 
(all sizes are those of Schwarzschild radii) and has a mass of 12.642 solar 
masses. (One solar mass= 33.299 gm) This mass suggests a galaxy. 

► Row 3. Size is of the order of 100 astronomical units (1 A.U. = 13 .17 4927 
cm) Mass is of the order of 1010 solar masses. Globular cluster? 

► 

► 

► 

► 

► 

► 

► 

Row 4. This value of A is close to the minor axis of the orbit of Mercury, 
which is equal to 12.753373. Apophasis involved here? 

Row 5. The value of A in this row is of the order of the size of a neutron 
star. Mass is of the order of 100 solar masses. 

M.:: 3 ci; ~2-6 7 5'7, tP:.lJ>t- G-#1 = ,35~3 7t S::: 0, '1'13 

Row 6. Size< a kilometer, mass~ earth like. Dark matter candidate? 

Row 7. An "octave"; probably non existant. 

Row 8. This value of A approximates that of the Bohr radius, a0=-8.276399 

Row 9. This value of A is precisely equal to that of the electron radius, re· 
The value of the mass is anomalistic. 

Row 10. This is the Planck particle with m0A = n/c and m/A = c2/G. 

Page 2 
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A PYTHAGOREAN KOAN 

In Zen monasteries chelas are given koans such as "What is the sound of one hand 
clapping". These are exercises in how to escape conventional and traditional patterns of 
thinking, usually by positing absurdities or impossibilities. We can imagine that in the 
Pythagorean Academy about 500 B.C.E. something similar was done to enable the apprentices to 
attain greater freedom of thought. But more likely a Pythagorean koan, rather than being a logical 
absurdity or impossibility, had to do with a geometrical visualization, for example: 

Visualize a prolate spheroid. Allow this spheroid to spin rapidly about one of its minor axes. 
What will be the resulting apparent "outer" figure? After reflecting the apprentice comes up 
with: The outer figure would be an oblate spheroid having the diameter of the prolate spheroid's 
major axis. Very good. Now visualize an oblate spheroid and allow it to spin rapidly about one 
of its major axes. What will be the apparent outer figure? The apprentice answers more quickly: 
The result would be a sphere with its diameter equal to the oblate spheroid's major axis. Good 
agam. 
Now tell me what would be the apparent "inner" figure in each case? 

Here the apprentice hesitates. What is the difference between outer and inner? Hmmm. The 
outer represents the portion of space occupied by the spheroid part of the time. It flickers giving a 
ghostlike semi-transparent image, like the spherical image in the spinning oblate spheroid case . 
Now what is the inner? The inner is the portion of space occupied by the spheroid all of the 
time. Its image appears to be solid and constant, not flickering like the outer image. OK, so what 
is the inner image of the spinning prolate spheroid? It is a sphere having a diameter equal to the 
minor or spin axis of the prolate spheroid. And what is the inner image of the spinning oblate 
spheroid? It would have to be a prolate spheroid with major axis equal to the major or spin axis 
of the oblate spheroid and with minor axis equal to the minor axis of the oblate spheroid. 

Now, what can you say about the apparent images as related to the rates of spin? Well, offhand I 
would say that the faster the spin rate the less flicker and the more solid the outer image would 
appear. At some high rate of spin the inner image might even be obliterated. But it is hard to say 
at what rate of spin the inner image would be most enhanced. Most likely at a much slower rate 
than the optimum for the outer image. 

You are leaving out an important factor in all of these perceptions. What are you ignoring? The 
apprentice is perplexed, reviews the visualizations, then hits on: How about the existence of 
some basic subjective frequency internal to the observer that leads to what is considered to be a 
fast or slow spin rate? 

Very good! Now explain the relation between perception and reality . 
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I. CYCLES> 1 YEAR 

ORBIT AL ECCENTRICITY CYCLE 

OBLIQUITY OF THE ECLIPTIC 
23° 27' 8.26" 

PRECESSION OF EQUINOXES 

ZERO CHECK CYCLE 

4PULSE 

SOTHIC CYCLE 

DIONYSIAN CYCLE 

:METONIC CYCLE 

SAROS 

I 
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November 28, 2010 

EARTH CYCLES 

93,408 ANOMOL YSTIC YEARS 

40,032 YEAR INCLINATION CYCLE 

25,725 YEAR CYCLE 

4,668 YEARS 
(LAST LINE UP 1437) 

556 YEARS 
(LAST 1996) 

1,461 YEARS 

532 YEARS 

235 LUNATIONS = 19 YEARS 

223 LUNATIONS = 18.03 YEARS 
= 6585.33 DAYS 
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2times4.w52 disk:TIME February 15, 1994 

flJ0Tl0R Tlml: liRD DI::R~TYY Tlml: 

Given a velocity and a distance, a travel time is derived by 
travel time= distance/velocity 

If a universal rate is postulated, such as the velocity of light, 
c, then a general concept of time is derived as 

light time= distance/c 
These travel or motion times support a "linear'' concept of time. 
[Some motion times: light travel from sun= 499.012 seconds; 
light travel time of the earth's orbit= 3135.383sec = 52 minuteaj 

C /,,,,1,_; ,it',/, ,v : ).,(( 

A second concept of time derives from the dimensional analysis of 
a function of density 

time= k/ ✓ density 
This kind of time supports a "cyclical" concept of time. 
For the earth, for example, density time is approximately 84 
minutes, while motion time, 2~R/c is 0.137 seconds (~ frequency 
of 7.3 hertz). 

These two times become numerically equal for bodies on the 
Schwarzschild Limit. 

GM/c2R = 1 
For bodies with GM/c 2R < 1, which includes everything but black 
holes, density time exceeds motion time . 

The formulae relating motion and density time derived from 
physical theory are as follows: 
From the definition of density time 

(1) 't' = ~ 4~2R3 
GM 

And the definition of motion time 

(2) 

We derive 

(3) 

2~R t = 
C 

As stated above, when GM= c2R, the body is on the Schwarzschild 
Limit and i- = t. Or possibly the Schwarzschild Limit is the 
result of a resonance condition resulting from i- = t. If the 
Schwarzschild Limit is the fundamental, we question how or 
whether higher harmonics are manifested. 
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DENSITY PERIOD No, G-PERIOD DAYS ERROR 

5.517 84m+19.609s 222 13 +33.3s 

5.513 84m+21.445s 973 57 -14.3s 

5.521 84m+17.776s 205 12 +44.ls 

5.51733 84m+19.3495 222 13 +0.009s 

S,Jil-£~ 
The density value of 5.51733, differing very slightly from the 
most probable value, gives an almost exact synchronization of the 
day and G-period every 13 days. With this value the maximum error 
in the 13 day cycle occurs on the seventh day. So, the new twist 
would be that synchronization does not occur on the seventh day 
as it would if the G-period were exactly 84 minutes, but that the 
times get most out of synch on the seventh day. God in creating 
the world realized that the synch error was increasing every day, 
and at the end of the sixth day He felt things were getting out 
of hand, so decided to take the next day off. Things began to 
improve on the eighth day, but we aren't sure what God did in the 
second week . 
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Another basic question is, how is density time properly 
interpreted? It is not age, it is not related to motion or travel 
time. It is cyclical, it manifests itself physically in satellite 
orbital times and dynamical rotational limits. Is it a 
synchronization signal? A temporal pulse that preserves coherence 
of the body or system? Is it possibly a universal zeitgeber? 
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STILL EVEN MORE ABOUT THE WEEK 
see also 1991 #88; 1994 #7, #13, #15; 2000 #22 

It was shown in Scrap 2000 #22 that the relation between the earth's rotation period (the 
24 hour solar day) and the earth's Schuster period, T=2TI ,l(R3/GM), could be taken as the 
b . fi h d k 1 as1s or t e seven ay wee . 

Value in seconds2 log10 value in seconds 

T The earth's Schuster Period 5060.24 

D The mean solar day 86400.00 

H The Hydrogen Period 7239.07 

First note the ratio: 
log T = 0.750361 = 3/4 
log D 

3.704171 

4.936514 

3.859683 

Indicating that to within about 4 parts in 104 the ratio of the logarithms of the Schuster period to 
the day is 3 to 4. In other words, (5060.24) 113 = 17.168 and (86400) 114 = 17.145, Li= 0.023 
or (5060.24)4 = 655,668,714 x 106 and (86400)3 = 644,972,544 x 106

; whose ratio is 1.0166 
or (5060,24)413 = 86875 and (86400)314 = 5039.48; Hence T4 = D3 

• 

For seven days, assuming 120 Schuster periods, 7 x 86400 = 604800 seconds and 
120 x 5060.24 = 607229 seconds, an error, Li= 2429 seconds (48 m 40s) in seven days. 
Possibly a basis for a seven day week. 
However, 
For thirteen days, assuming 222 Schuster periods, 13 x 86400 = 1123200 seconds and 
222 x 5060.24 = 1123373.28 seconds, an error, Li= 173 seconds (2 m 53s) in 13 days. 
A very good case for a thirteen day week. 

And where has there been a thirteen day week? The ancient Maya used a basic thirteen day 
period and from their vigesimal number system of base 20 derived a sacred "year" of 260 days. LT 2= 0 /... I<,"' 1 
We know that the Maya were good astronomers deriving a calendric year more accurate than our 
present Gregorian year. So maybe they were also good geophysicists recognizing the relation 
between the earth's Schuster period and the earth's solar rotation period. 

31, o if)"'-:,,-=- 7vN 

?ts Jay= h""-""-h 

'The Schuster period is determined by the mass M and radius R of the earth and is the 
time period in which a satellite would circle a spherical earth at its surface were there no 
atmosphere or other obstructions. 

2These values are derived from a mean earth radius 6.371000 x 108 cm and 
Earth mass of 5.9737 x 1027 g [Cox, Astrophysical Quantities 1999] ; and 
G = 6.674215 x 10·8 cm3/g s2 [Physics Today July 2000 p 21] 
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EVEN MORE ON THE ORIGIN OF THE WEEK 

Nine hundred million [ 9 x 108 
] years ago the length of the day was 18 hours. In 

subsequent time the tides, largely lunar, have gradually slowed the turning rate of the earth 
increasing the length of the day to the present 24 hours. To balance the resulting decrease in the 
earth's angular momentum, the angular momentum {MR2/T} of the earth-moon system has 
changed. This has resulted in the moon moving further away from the earth at a rate of about 
3 .82 ± 0.07 cm/year. 1 Observations [ eg radar ranging of the lunar distance] and calculations [ eg 
records of times and places of ancient eclipses] indicate that the rate of increase in the length of 
the day has been: 

2.43 ± 0.07 milliseconds per century from 390 BCE to 948 AD. and 
1 .40 ± 0.04 milliseconds per century from 948 AD to 1800 AD 2 

In addition to the rotation period, [length of day], a second important period associated 
with the earth is the so called "Schuster Period", the time it would take for an artificial satellite 
to orbit the earth at its surface if the earth were an airless smooth sphere. This period, 1", is a 
function of the mean density of the earth, p, and is given by, 't' = (G p)-112

, where G is 
Newton's gravitational constant 

Table I gives the values of the Schuster period in seconds corresponding to the best 
estimates of the earth's mean density in gm/cm3 

• 

TABLE I 

DENSITY 5.513 5.517 ± 0.004 5.521 

PERIOD 84m+ 21.439 s 19.609 ± 1.83 s 17.779 s 

Using the present most probable value for the earth's density of 5.517 gm/cm3, the 
Schuster period is close to 84 minutes and 19.61 seconds. If we take this value as being constant 
over millions of years, we ask at what dates in the past or in the future will the ratio of the 
rotation period to the Schuster period have small rational values. That is, what are the smallest 
integers N0 and Ns that are solutions of the Diophantine equation, 

N0 x (Length of Day)= Ns x (Schuster Period) 

1 K. R. Lang, ASTROPHYSICAL FORMULAE Vol II p. 80 

2 Ibid p. 80 

I 2.._ 
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ENGLISH SAXON GERMAN LATIN FRENCH SPANISH 

SUNDAY SUN'S DAY SONNTAG DIES SOLIS DIMANCHE DOMINGO 
MONDAY MOON'S DAY MONTAG DIES LUNAE LUNDI LUNES 
TUESDAY TIW' S DAY DIENSTAG DIES MARTIS MARDI MARTES 
WEDNESDAY WODEN'S DAY MITWOCH DIES MERCURII MERCREDI MIERCOLES 
THURSDAY THOR'S DAY DONNERSTAG DIES JOVIS JEUDI JUEVES 
FRIDAY FRIGG'S DAY FREITAG DIES VENERIS VENDREDI VIERNES 
SATURDAY SETERNE'S DAY SAMSTAG DIES SATURNI SAMEDI SABADO 

RUSSIAN JAPANESE ITALIAN GREEK 

BOCKPECEHbE [Jff 
no HE~EJlbHI1K 
BTOPHI1K 1/( 
CPE~A 1J< 
lJETBEPf *,-6__ 
TTRTHI1UA £± 
CYEEOTA 
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TIMWEEK2.W52 DISK:TIME January 31, 1994 

MORE ABOUT THE WEEK 

In TIMWEEK1.P51, (1991-#88), several properties of the Schuster 
period were mentioned. To those reported there should be added 
the very important property of equatorial fragmentation. The 
Schuster period is the limiting rotational period for a rotating 
earth not to disintegrate. For the earth to rotate with a period 
shorter than 84 minutes, centrifugal force at the equator would 
exceed~ gravitational pull1 and the planet would become 
unstable with mountains flying off into space. But the good news 
is that we have a considerable "spin safety factor" against that 
occurring. One rotation period is 1440 minutes, the Schuster 
period is 84 minutes, giving a safety factor of 

1440 
84 

= 120 =171/7 
7 

This ratio$ of 120/7 is also the ratio of Schuster periods to days 
in a week. Hence the earth's spin safety factor is implicit in 
the seven day week. 

We have seen that the week is the smallest number of earth 
rotation periods with an integral number of Schuster periods. But 
also of interest are the "beat periods" between the Schuster 
cycle and the rotation cycle. Beat frequencies, fb, are given by 

f, ± fr = fb 
where f 5 and fr are the Schuster and rotational frequencies 
respectively. Substituting 5/7 hours and 1/24 hours, we get beat 
periods of lh 29m 12 5 and lh 19m 22 5 

• These values are very 
close to 3/2 hour and 4/3 hour, which divide the 24 hour day into 
16 and 18 intervals respectively. It seems that again the 
ancients were in touch with something we have lost. The division 
of daylight time into 9 "hours" was an ancient practice. (Still 
reflected in the Prime, Terce, Sext, None of the monastic day) 
Did this division of time into nine instead of twelve periods 
come from subtle or overt experience of p'i'f:e Schuster beat 
periods? 
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DIMENSIONAL TIMES 
On the basis of dimensional considerations there are four species 
of time: Mo Ur;,..., + &yc;r,v 1 ?-11./r'tJ·•---1,:( 
t Motion or Radar time 

~ Density or Kepler time 

T Energy time 

R t = 2n-
c 

T = 

/J 

h 
Mc 2 

ca lcv /1cfr tee,/, 

r "f(' Gravitational time 1/:n e 

,1 ~ f 
~ ' 

.\ \ ~o e,,,, 

Complementary to 
by (action/time) 
action) 

each of these four times are four energies given 
in each case. (h has the dimensions [ML2/T] of 

Motion energy 

Density energy 

Total energy 

Gravitational energy 

he 
2rcR 

E = Mc 2 
t 

GM 2 
E = --

g R 

Ss /-)._w {)V>-'I. l-

RJ1 +,>-,,.e. 
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TEMPORAL lDICHOTOMBE.S 

PHYSICAL TIMES 
MOTION 
ARISTOTELEAN 

LIGHT TIME 
FAST 
INFORMATION 
COMMUNICATION 
SPECTRAL LINES 
LEPTON TIME 

BIOLOGICAL TIMES 
NEURON TIMES 
CIRCADIAN RHYTHMS 
SUBJECTIVE TIME 

CULTURAL TIMES 
CHRONOS 
SECULAR 
SOLAR 
IMPERFECTIVE 

CONCEPTUAL TIMES 
LINEAR 
EVOLUTIONARY 

INOVATIVE 
HISTORICAL 
TEMPORAL 
FREQUENCY 
CONTINUOUS 
OPEN 

(ft:Cd,/Jinl Tl I\ L 
p 11 Ci-1 

DENSITY 
KEPLERIAN 

2nd T oc R2 

3rd T2 oc R3 

GRAVITATIONAL TIME 
SLOW 
MATTER/L---rvt-r. G Y 
TRANSPORTATION 
G-ATOMIC 
BARYON TIME 

MUSCULAR TIMES 
MONTHLY RHYTHMS 
OBJECTIVE TIME 

KAIROS 
LITURGICAL 
LUNAR 
PERFECTIVE 

CYCLICAL 
REPETITIVE 

ITERATIVE 
ARCHETYPAL 
PRIMORDEAL 
PERIOD 
DISCRETE 
CLOSED 

Creativity must have two frames of reference.--Craik 

Information must have a faster rate than matter. 

Is Kairos associated with density time? Both are cyclical. 
Is Chronos associated with motion time? Both are linear . 
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BASIC TIMES AND FREQUENCIES 

ITEM FORMULA LOG10 VALUE SECONDS HERTZ 

electron 2rcf (r/ /Gme) -0.918814 0.120555 8.294954 

baryon 2rcf (r//G~) -2.550769 0.002813 355.442210 

hydrogen 2rcf (a}/G~) +3.859735 7239.9405 0.0001381 

earth Schuster 2rcf(R//GMe) +3.704223 5060.8446 0.0001976 

earth Schumann 2rcR/c -0.874433 0.133526 7.489158 

earth Schwarz .. GM/c3 -10.829925 1.479364 X 10"11 6.759662 X 1010 

orbit Schumann 2rc(A.U.)/c +3.496286 3135.3498 0.0003189 

earth rotation 0 +4.9365137 86400 1.157407 X 10·5 

earth rotation * +4.9353263 86164.09054 1.160576 X 10·5 

earth geosync • 2rc ~/c -0.052906 0.885307 1.12955 

neutron star aµS~ -2.785412 0.001639 610.1154 

sun Schuster 2rcf(R//GMs) +4.000163 10003.7539 0.00009996 

sun Schumann 2rcR/c +1.163661 14.576760 0.068602 

Sun Schwarz .. GM/c3 -5.307523 0.000004926 203012.6031 

Univ Schuster f(R}IGMu) +17.456065 9.056 gyr ~ 

Univ Schumann ~/c +17.456065 " 

Univ Schwarz ... GM/c3 +17.456065 " 
* This is the Schumann period at the distance Rg, = 42241 km (26,247 miles) for synchronous 
satellites in equatorial orbits. 

Notes: 
(earth Schuster)4 = (earth rotation 0)3

, 14.817 = 14.810 
(earth Schuster)/(hydrogen) = 0.699017 or 7/10 
(log day)= (log hydrogen) x ( log 19) 4.9365 = 4.9357 

D.. = 0.007 
D.. = 0.001 

(log hydrogen)= (log earth Schuster) x (log 11) 3.860 = 3.858 
D.. = 0.0008 

D.. = 0.002 
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