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ven the most 
brilliant inno
vators get their 

A circular pattern 
of triangles with 
curved sides, 
similar to this one, 
inspired M.C. 
Escher to create 
his Circle Limit 
series of prints. 

inspiration from 
somewhere. 

For the Dutch 
graphic artist 
M.C. Escher, 
such acre-

ative impetus came from a 
particular illustration in a 
1957 mathematical arti~ 
de about symmetry. It 
gave him what he lat
er· described as 
"quite a shoe)<" and 
inspired hifu to 
create fouft art- , 
works: the Circle 
Limit series of 
prints. 

The illustra
tion showed a 
curious tiling of 
black and white 
triangles with 
curved sides. En
closed within a · •. 
circle >the• ·alter~< 

' .• ~ ,• ~'J: " · .. :.:. J • •• ' •• • ,·"': 

nately cqlored jric : 
angles became pro- . 
gi-essivelysITialler as·. • 
they approached the. ·. 

· circle's perimeter, 
The concept of infini

ty had long intrigued Es
cher, and he had sought to 
capture this elusive notion in. 
visual images. One strategy that.. . 

f 

Tiling. a .hyperboli~ flf>or J~spir~ 
both mathematics and art 

that had so startled Escher offered him a 
precise, aesthetically pleasing way to· de
pict diminishing figures within a circle. 

· Coxeter had sent Escher a copy• 
symmetry article as ·a thank you foi 
mission to reproduce several of Esc 
periodic drawings as illustrations. 
men had met in 1954 in Amsterdam; 

International'C,9pgres~•of-M9-th~ 
cian~, w~ere there was an e: 

.. •.• tion'<dt E~clier's work; Tfo 
····• \counter '' ·· · led, .:; 

· drte~p911dencebet 
Jli~:l~<>; which q 
·"11~cl ••. until 'Esc 

;'1;ftt~iit~' 
niailed ½OX~ 

print·· of ".1 
Llmit f' . 
•· firstJiuit1i 

·· ture,·ins 
.l?f i .G9 
into . h 
bolic gE 
try. lri 

·<decades 
Escher's 

·. tial fora' 
Circle · 
ririt.s ha, 

··•t~t··· ' ·;,J; 
ma ··au, 

. ;y~tig~#q# 
··. artistic'end~ 
Each year,· rr 

maticians and 
~ .. puter sdeI1tists c, 

~'i,uetOadd tothe litei 
,:of hyperbolic tilings ai 

. ".latedlnatheinatical topic:$ 
he employed was to create repea~ ... 
ing patterns of interlocking figures. Al-·. 
though Escher could imagine how such 
arrays could extend infinitely, the actual . espite the many manifestatic 
patterns he drew, of course, represented M.C. Escher's "Circle Umit Ill." · Escher-inspired research, 
only a fragITient qf an infiniteexpanse. .· •·.· . . .... . . .. . . . . . ·· .. ···•··· stem~ froI'IlJhe ~ame _basic.p 
. In another approach; E.schirtriedtoifit .•.. Th~ ~ci~c'onta.iitlrig fu; ~iagiani h~<i' ples of cur:yed geometryi < •. •··. •· .. •. . 

together,ieplicas of.afigure:such,as a .. ••been "7i-iti:enbyRS.:M, Cox~ter,a rpathe:< 'for. exariiple;Ifyou .c:1r.~:w any tr~ 
fish, that diminish in, size¥ tfieyspiral i1r- · ·•• maticianat.tlie Uµiv~r~ity_of Toronto: T<>'~ ;C>11 a s~eerof. papef and add upJtt 
to or recede fro ma point i11 the midc:lle of . <la.yin his nineties: C:,oxeterccontinues to• .,angles,ilie result is· always 180 dei 
a square or drc11larframe. However; he .. •.· focus on the interplay.ofsymmetry and Wheij )'OU cir-aw a. tria11glt{on as~ 
wasn't entireiy satisfied.With these efforts .. · georrietrjc sfol.pes;, His~ie.searc~ covers•• ·.~tiap~d s11rfa.ce,.l:low~v~r. the' ajlij!• 
. The mathematical i:lrawirig_..:.an illustra~ topics such as the mathematics ofkalei- .· yirriablyadd up to Jess thari 11,30 deg; 

tion of the se><alled hyperbolic plane-:-::; doi;copjcpatterI1s; · . . .. · . . . .Just as a Hat surfac~like tllatofa 
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A hyperbolic quilt sewn togethf!( from 
pentagons of cloth; with four pentagons 
meeting at each comer in the pattern. · 

of paper-is a piece of the infinite mathe
matical surface known as the Euclidean 
plane, a saddle-shaped surface c.:an be 
thought of as a small piece of the hyper
bolic plane. Picturing what the hyperbolic 
plane looks like on a larger scale, however, 
requires somemind0bending ingenuity._---• 

-Freelance mathematician-·• Jeffrey''. R 
Weeks of Canton, N.Y., suggests making 
"hyperbolic paper" from a large number 
of equilateral triangles as one way to get 
a feel for the hyperbolic plane. 

Taping together equilateral triangles so 
that precisely six triangles meetat each 
vertex-produces•a flat sheet; In contrast, 
assembling equilateral triangles so seven 
triangles meet at each vertex produces a 
floppy, bumpy surface. The more trian
gles you use and the.largerthe resulting 
sheet, the more closely it resembles. the 
hyperbolic plane. -

A similar construction can be done with 
pentagons. Mathematician and sculptor 
Helaman Ferguson of Laurel, Md., has 
made an intriguingly wrinkly hyperbolic 
quilt by sewing together pentagonal patch
es of fabric so that four pentagons meet at 
each corner. It's an unruly blanket that re
fuses to lie flat, he says. 

Such constructions are not the only 
way to visualize the hyperbolic plane .. 
More than a century ago, French mathe
matician Henri Poincare introduced a 
method for representing the entire hyper
bolic plane on a flat, disk-shaped surface. 

In Poincare's · model, the hyperbolic 
plane is compressed to fit within a circle. 
The circle's circumference represents 
points at infinity. In this context, a 
straight line, meaning the shortest dis
tance between two points, is a segment 
of a circular arc that meets the Poincare 
disk's circular boundary at right angles 

Although this model distorts distances, 
it represents angles faithfully. The hy
perbolic measure of an angle is equal to 
that measured in the disk representation 
of the hyperbolic plane. So, a repeating 
pattern made up of identical geometric 
shapes in the hyperbolic plane trans
forms, when represented in a Poincare 
model, into an array of shapes that dimin
ish in size as they get closer to the disk's 
bounding circle. 

For his Circle limit prints, Escher 
worked out the underlying rules of these 
disk models and developed his own 

diethodfor constructing a hyperbolic grid, 
relying on his skill and intuition to create 
the geometric scaffolding he needed. Cox
eter's "hocus pocus" mathematical text 
wasn't much help, Escher later remarked 
in a letter to Coxeter. Nonetheless, Escher 
executed th~ drawings with extraordinary 
accuracy, Coxeter comments. 

"The first time I saw a print of 'Circle 
Limit III,' I said to myself, 'that is the most 
beautiful example I have ever seen of the 
Poincare circle model for hyperbolic 

-geometry,"' says J. Taylor HoHist, a math
ematician at the State University of New 
York at Oneonta. He's documented many 
historical interactions between Escher 
and scientists. 

I3~ides its beauty, "Circle Limit III" also 
presents a puzzle. For some reason, in this 
particular case, Escher drew a pattern of 
lines somewhat different from that in Cox
eter's original drawing. The main arcs 
seen in "Circle Limit III" meet the circum
ference at a specific angle very close to 80 
degrees rather.than precisely 90 degrees. 

Coxeter was able to demonstrate that 
each arc is of a type known to mathemati
cians as an equidistant curve. It bears the 
same relationship to a hyperbolic straight 
line,as a line ofJatitude does to the equa
tor on the surface of a sphere. 

When. Coxeter worked out trigono
metriccllly_what t:Q~ proper angle of such 
a curve in Escher's print should be, he 
obtained W degrees SB minutes, again 
confirming lhe accuracy of Escher's 
draftsmanship. -

esides intriguing pro
fessional mathemati
cians, Escher's Cir-

cle limit prints and 
their repeating pat
terns prove to be 
useful vehicles for 
becoming com
fortable with and 
teaching hyper
bolic geometry, 
says Douglas J. 
Dunham of the 
computer sci
ence depart
ment at the Uni
versity of 
Minnesota at Du
luth. "Even to 
mathematicians, 
hyperbolic geometry 
is not that familiar," he 
contends. 

Dunham and his stu
dents have written several 
computer programs to gener
ate hyperbolic patterns, particular-
ly those made up of repeating motifs col
ored in various ways. 

Mathematicians use a standard nota
tion for describing a mosaic made up of 
identical tiles, where each tile is a poly
gon with a given number of edges of the 

same length and tqe same number of cor
ners or vertexes. On a flat surface, there 
are three such tilings. A tiling in which six 
equilateral triangles meet at each inter
section is designated {3,6}, one in which 
four squares meet at each intersection is 
{4,4}, and one in which three hexagons 
meet at each intersection is {6,3}. 

The same notation applies to regular 
tilings of the hyperbolic plane. A tiling 
where four pentagons meet at each vertex 
is labeled {5,4}. In general, for polygons 
with·p sides; meeting q at a vertex, the re
stilt is a hyperbolic tilinj(when (p- 2) mul
tiplied by ( q- 2) is greater than 4. 

Escher's "Circle Limit IV," which fea
tures interlocking devils and angels, is an 
example of a {6,4} tiling. In other words, 
the underlying hyperbolic grid consists of 
hexagons that meet four at each vertex. 

Dunham has developed a computer 
program that transforms a hyperbolic Es
cher design from one tiling pattern to an
other. For example, he can transform the 
{8,3} pattern of crosses in "Circle Limit II" 
into a strikingly different {10,3} tiling, 
where the central figure is a star. 

The same pattern can be transformed 
into an array of starbursts with any num
ber of rays, Dunham notes. Indeed, there 
is an infinite number of hyperbolic tilings 
available for such transformations. The 
use of different motifs and color schemes 
increases the possibilities even further. 

At a conference on mathematical con
nections in art, music, and science held last 

summer at South
western 

College 

Escher's 
"Circle Limit 

IV," as seen in this 
computer-generated rendition in gray 
and white, has an underlying tiling 
pattern in which four hexagons meet at 
each vertex. 
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tte had worked with Celtic knot pat
terns, used centuries ago in Ireland and 

· elsewhere to decorate religious texts. 

pattern, then joining the two ends to 
form a continuous band. 

Dunham now has a computer program 

1 
C: 
::, 
a 

Douglas Dunham has developed a computer program that can transform one 
hyperbolic tiling pattern into another. In this case, he has used the program to convert 
the .crosses of his rendition of Escher's "Circle Limit H" pattern (left) into stars (right). 

A simple Celtic knot pattern (left). Such a wovf,m,pattem can be converted into an 
array of interlocking rings, then depicted usingihyperbolic geometry (right); 

410 

:,1uu:; u1 u1ese ancient aesigns. He can . 
so construct examples in which rings i 
tedock fo tht!. oyei--and-undei- .Patt~ 
characteristic of Celtic knots. · · 

Interestingly, Escher himself iricorpor, 
ed an intricate pattern of interlocking rin, 
within a .circular frame in his last woodct 
"Snakes." Dunham can show that this p.: 
tern is closely related to a hyperbolic vai 
ant of a Celtic weaving, Although Esch, 
and Dunham approached these patten 
from different perspectives; their intelle 
tual common ground is apparent. 

In a 1960 essay later translated and pul 
fished in the book The Graphic Work < 
MC Escher (1961, Duell, Sloan and Pearce 

A pattern based 
on transforrninf 

acomputer
generated 
rendition of 
Escher's 
"Circle Limt. 
Ill" so that a 

pentagonal 
shape appean 

in the middle 
instead of a square. 

Escher noted; "The ideas that are basic tc 
[my art] often'bear witness to my amaze 
ment and wonder>at the laws of natur~ 
which operate in the World around us. 

"By keenly confronting the. enigmas 
that surround us, and by considering and 
analyzing the observations that I have 
made, I ended up in the domain of mathe
matics," he continued. "Although I am ab
solutely withouftraining or knowledge in 
the exactsdehces, I often seem to have 

· more. in common with mathematicians 
than with my fellow artists." 0 

: ,- ,-__ : , ' ;:: : _, ~ 
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COMBINATIONS OF POLYGONS WITH THE TILING PROPERTY 1:: = 360° 

TABLE I ~ = 360° 
I s IDE I DEGREES I + I + I + I + I + I + I + I + 

3 60 1 1 1 2 3 2 1 1 4 6 

4 90 1 1 1 2 1 2 4 

5 108 1 2 

6 120 1 2 3 1 1 I 
8 135 1 2 

9 140 1 

10 144 1 1 

12 150 1 1 2 

15 156 1 

18 160 1 

20 162 1 

24 165 1 

The condition that at a vertex the sum of the angles of the participating polygons be 360° 
is necessary but not sufficient for the combination to constitute a tiling configuration. 
Those combinations marked with a+ form tiling patterns. 
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Totally Tessellated: Regular Tessellations, page 4/4 

Regular Tessellations (4/4) 

The Regular Tessellations 

tessellations of a single regular polygon 

,' 

', 

' 

3.3.3.3.3.3 4.4.4.4 

6.6.6 

<:tAt:> 
Bad Up Next 

Real examples of regular tessellations: 

http://library.advanced.org/16661/simple.o£regular.polygons/regular.4.html 

Page 1 of2 
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1 otally 1 esseHated: Kegu1ar 1 esseHations, page 4/4 rage l Ul L 

• 
Regular Tessellations (4/4) 

The Regular Tessellations J 

tessellations of a single regular polygon 

3.3.3.3.3.3 4.4.4.4 

• 
6.6.6 

<J A 1> 
Ba6: Up Kcxt 

Real examples of regular tessellations: 

• 
•lr:l .:•:) ... · : 

· .. :_., 

:,c;~ 

http://library.advanced.org/l666l/simple.o£regular.polygons/regular.4.html 10/7/98 
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Totally Tessellated: Semiregular Tessellations, page 4/4 

Semiregular Tessellations (4/4) 

The Semiregular Tessellations 

tessellations of two or more different regular polygons such 
that the same polygon arrangement exists at every vertex 

3.12.12 4.6.12 

4.8.8 3.6.3.6 

3.4.6.4 3.3.3.3.6 

http:/ /library.advanced.org/ 16661 /simple.ofregular. polygons/semiregular.4 .html 

Page 1 of2 

10/7/98 
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Totally Tessellated: Semiregular Tessellations, page 4/4 

3.3.3.4.4 3.3.4.3.4 

<::::I A t>-
sao: Up r,~~ 

Real examples of semiregular tessellations: 

q 

To browse full-page _,..~ 
templates of the ~ .. :· 

semiregular tessellations 
that are ready to be printed, 

proceed to the templates page: 

top of the page 

http://library.advanced.org/16661/simple.o£regular.polygons/semiregular.4.htm1 

Page 2 of2 

10/7/98 
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Totally Tessellated: Semiregular Tessellations, page 4/4 

Semiregular Tessellations (4/4) 

The Semiregular Tessellations 8 

tessellations of two or more different regular polygons such 
that the same polygon arrangement exists at every vertex 

3.12.12 4.6.12 

4.8.8 3.6.3.6 

3.4.6.4 3.3.3.3.6 

http://library.advanced.org/16661 / simple.ofregular. po lygons/semiregular .4.html 

rage 1 01 L 

10/7/98 
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Totally Tessellated: Semiregular Tessellations, page 4/4 

3.3.3.4.4 3.3.4.3.4 

<ll A ► 
Bact-; Up Next 

Real examples of semiregular tessellations: 

To browse full-page _) 
templates of the aL_ .. :· 

semiregular tessellations ~ 
that are ready to be printed, 

proceed to the templates page: 

top of the page 

http://library.advanced.org/l6661/simple.o£regular.polygons/semiregular.4.html 

Page 2 of2 

10/7/98 
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Totally Tessellated: Templates 

Semiregular Tessellation 3.12.12 (black large image) 
Totally Tessellated @ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http://library.advanced.org/ 1666 I/templates/semi. I .black.I.html 

Page 1 of2 

10/7/98 



Totally Tessellated: Templates 

Semiregular Tessellation 3.12.12 (gray large image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window. 

http://libraiy.advanced.org/16661/templates/semi.1.gray.l.html 

Page 1 of2 

10/7/98 
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Totally Tessellated: Templates 

Semiregular Tessellation 4.6.12 (black large image) 
Totally Tessellated @ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http://library.advanced.org/16661/templates/semi. 7 ._black.I.html 

Page 1 of2 

10/7/98 



Totally Tessellated: Templates Pag~ 
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~fm.6.black.l.html 10/7/98 
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Totally Tessellated: Templates 

Semiregular Tessellation 4.8.8 (black large image) 
Totally Tessellated @ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http:! /library.advanced. org/16661/templates/semi. 8. black.I.html 

Page 1 of2 

10/7/98 



Totally Tessellated: Tern !ates Page 2 of2 
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Totally Tessellated: Templates 

Semiregular Tessellation 3.6.3.6 (black large image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http://library.advanced.org/16661/templates/semi.6.black.l.html 

Page 1 of2 

10/7/98 



---.:::.P-=a,~2_.of 2 

• 

• 

• 
http ~romncedaOFgfM6ol1fempfare emi. 5. black 10/7/98 



• 

• 

• 

Totally Tessellated: Templates 

Semiregular Tessellation 3.4.6.4 (black large image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instmctions: Print this page and then close this window . 

http://library.advanced.org/16661/templates/semi. 5. black.l.html 

Page 1 of2 

10/7/98 



http://libr~i=gf~lafesJsemi. l. black.I.html 
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Page2 of2 

10/7/98 
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Totally Tessellated: Templates 

I 

\ 

Semiregular Tessellation 3.3.3.3.6 (black large image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window. 

http://library.advanced.org/16661/templates/semi.2.black.l.html 

Page 1 of2 

10/7/98 
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Totally Tessellated: Templates 

Semiregular Tessellation 3.3.3.4.4 (black large image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http://library.advanced.org/16661/templates/semi.3. black.I.html 

Page 1 of2 

10/7/98 
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Totally Tessellated: Templates 

Semiregular Tessellation 3.3.4.3.4 (black large image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http://library.advanced.org/16661/templates/semi.4.black.l.html 

Page 1 of2 

10/7/98 
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Totally Tessellated: Demiregular Tessellations, page 2/2 

Demiregular Tessellations (2/2) 

The Demiregular Tessellations 

tessellations of regular polygons and that have exactly 
two or three different polygon arrangements 

those with two different polygon arrangements: 

3.3.6.6/ 3.6.3.6 3.12.12 / 3.4.3.12 

3.3.3.3.3.3 / 3.3.4.12 3.3.3.4.4/ 3.4.6.4 

3.3.3.3.3.3 I 3.3.4.3.4 #1 3.3.3.3.3.3 / 3.3.4.3.4 #2 

note that although the above two tessellations use the same 

http://library.advanced.org/16661/o£regular.polygons/demiregular.2.html 

Page 1 of3 

10/7/98 
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Totally Tessellated: Demiregular Tessellations, page 2/2 

polygon arrangements, they differ in their overall structure 

3.3.4.3.4 / 3.4.6.4 3.4.6.4/ 3.4.4.6 

3.4.6.4 / 4.6.12 

those with three di:fferent,polygon arrangements: 

3.3.3.3.3.3 / 3.3.3.4.4 I 3.3.4.3.4 #1 3.3.3.3.3.3 I 3.3.3.4.41 3.3.4.3.4 #2 

note that although the above two tessellations use the same 
polygon arrangements, they differ in their overall structure 

http://library.advanced.org/l6661/o£regular.polygons/demiregular.2.htm1 

Page 2 of3 

10/7/98 
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Totally Tessellated: Demiregular Tessellations, page 2/2 

3.3.3.3.3.3 / 3.3.4.12 I 3.3.4.3.4 3.3.3.4.4 / 3.3.4.3.4 I 3.4.6.4 

3.3.4.3.4 / 3.3.4.12 / 3.4.3.12 

A real example of a 
demiregular tessellation: 

To browse full-page templates .J 
of the demiregular tessellations ~-./ 

that are ready to be printed, 
proceed to the templates page: 

top of the page 

http://library.advanced.org/16661/o£regular.polygons/demiregular.2.html 

Page 3 of3 

10/7/98 
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Totally Tessellated: Demiregular Tessellations, page 2/2 

Demiregular Tessellations (2/2) 

The Demiregular Tessellations / 11 

.j 

tessellations of regular polygons and that have exactly 
two or three different polygon arrangements 

those with two different polygon arrangements: 

3.3.6.6 / 3.6.3.6 

I 
3.12.12 / 3.4.3.12 

✓/ 

3.3.3.3.3.3 / 3.3.4.12 3.3.3.4.4 I 3.4.6.4 

✓ 

3.3.3.3.3.3 / 3.3.4.3.4 #1 3.3.3.3.3.3 / 3.3.4.3.4 #2 

note that although the above two tessellations use the same 

http://library.advanced.org/ 16661/of regular. polygons/demiregular.2.html 

Page 1 of3 

10/7/98 
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Totally Tessellated: Demiregular Tessellations, page 2/2 

polygon arrangements, they differ in their overall structure 

,,/' 

3.3.4.3.4 / 3.4.6.4 3.4.6.4 / 3.4.4.6 

3.4.6.4 / 4.6.12 

/ those with three different polygon arrangev,ents: 

3.3.3.3.3.3 / 3.3.3.4.4 / 3.3.4.3.4 #1 3.3.3.3.3.3 / 3.3.3.4.4 / 3.3.4.3.4 #2 

note that although the above two tessellations use the same 
polygon arrangements, they differ in their overall structure 

http://library.advanced.org/16661/of.regular.polygons/demiregular.2.html 

Page 2 of3 

10/7/98 
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Totally Tessellated: Demiregular Tessellations, page 2/2 

/ 

3.3.3.3.3.3 / 3.3.4.12 / 3.3.4.3.4 3.3.3.4.4 / 3.3.4.3.4 / 3.4.6.4 

3.3.4.3.4 / 3.3.4.12 / 3.4.3.12 

◄ & 
8:vJ; IJ,ri \:<:/ 

A real example of a 
demi regular tessellation: 

To browse full-page templates ,.J 
of the demi regular tessellations ,f-.) 

that are ready to be printed, · 
proceed to the templates page: 

top of the page 

http:/ !library. advanced. org/16661 /of. regular. polygons/demiregular.2.html 

Page 3 of3 

10/7/98 
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Totally Tessellated: Templates 

Demiregular Tessellation 3.6.3.6 / 3.3.6.6 (black large image) 
Totally Tessellated @ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http://library.advanced.org/ 16661 /templates/demi.4. black.I.html 

Page I of2 

10/7/98 
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Totally Tessellated: Templates 

Demiregular Tessellation 3.12.12 / 3.4.3.12 (black large image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http://library.advanced.org/16661/templates/demi. l. black.I.html 

Page 1 of2 

10/7/98 
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Totally Tessellated: Templates 

Demiregular Tessellation 3.3.3.3.3.3 / 3.3.4.12 (black large image) 
Totally Tessellated @ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 
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Totally Tessellated: Templates 

Demiregular Tessellation 3.3.3.4.4 / 3.4.6.4 {black medium image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http://library.advanced.org/16661/templates/demi. l O.black.m.html 
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Demiregular Tessellation 3.3.3.3.3.3 / 3.3.4.3.4 #1 (black medium image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 
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Totally Tessellated: Templates 

Demiregular Tessellation 3.3.3.3.3.3 / 3.3.4.3.4 #2 (black medium image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 
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Totally Tessellated: Templates 

Demiregular Tessellation 3.3.4.3.4 / 3.4.6.4 (black medium image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 
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Totally Tessellated: Templates 

Demiregular Tessellation 3.4.6.4 / 3.4.4.6 (black medium image) 
Totally Tessellated @ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 
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Totally Tessellated: Templates 

Demiregular Tessellation 3.4.6.4 / 4.6.12 (black large image) 
Totally Tessellated @ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http ://library. advanced. org/ 16661/templates/ demi.3. black.I.html 
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Totally Tessellated: Templates Page 1 of2 

Demiregular Tessellation 3.3.3.3.3.3 / 3.3.3.4.4 / 3.3.4.3.4 #1 (black large image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 
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Demiregular Tessellation 3.3.3.3.3.3 / 3.3.3.4.4 / 3.3.4.3.4 #2 (black medium image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 
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Demiregular Tessellation 3.3.3.3.3.3 / 3.3.4.12 / 3.3.4.3.4 {black medium image) 
Totally Tessellated @ http://libral)'.advanced.org/16661/ 
Instructions: Print this page and then close this window . 
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Demiregular Tessellation 3.3.3.4.4 / 3.3.4.3.4 I 3.4.6.4 (black medium image) 
Totally Tessellated@ http://libral)'.advanced.org/16661/ 
Instructions: Print this page and then close this window . 
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Totally Tessellated: Templates 

Demiregular Tessellation 3.3.4.3.4 / 3.3.4.12 / 3.4.3.12 (black medium image) 
Totally Tessellated @ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http://library.advanced.org/16661 /templates/demi.14.black.m.html 
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Totally Tessellated: Templates 

Extra Tessellation #1 (medium image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http://library.advanced.org/16661/templates/extra.1.m.html 
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Totally Tessellated: Templates 

Extra Tessellation #2 (medium image) 
Totally Tessellated @ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http ://library. advanced. org/16661/templates/ extra. 2.m.html 
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Totally Tessellated: Templates 

Extra Tessellation #3 (medium image) 
Totally Tessellated@ http://library.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http://library.advanced.org/16661/templates/extra.3 .m.html 
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Totally Tessellated: Templates 

Extra Tessellation #4 (medium image) 
Totally Tessellated@ http://libra:ry.advanced.org/16661/ 
Instructions: Print this page and then close this window . 

http://library.advanced.org/ 16661 /templates/extra.4.m. html 

Page 1 of 1 

10/7/98 
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DODECAHEDRON ICOSAHEDR..ON 
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MISCELLANEOUS POLYHEDRA 
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DODECAHEDRON 
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OCTAHEDRON 
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The honeybee's storage system consists of an array of hexagonal catls precisely constructed from wax. ' Agricultural Research Service. USDA 

oneybees know a thing or two about 
working with wax and fashioning 
elegant, symmetrical structures. 

Gorging themselves on honey, young 
worker bees slowly excrete slivers of wax, 
each fleck about the size of a pinhead. 
Other workers harvest these tiny wax 
scales, then carefully position and mold 
them to assemble a vertical comb of six
sicled, or hexagonal, cells. The bees clus
ter in large numbers, maintaining a hive 
temperature of 35"C, which keeps the 
wax firm but malleable during cell con
struction. 

This energetic, piecemeal activity pro
duces a strong, remarkably precise struc
ture. Each wax partition, less than 0.1 
millimeter thick, is fashioned to a toler
ance of 0.002 mm. Moreover, the cell 
walls all stand at the correct 120° angle 
with respect to one another to form a lat
tice of regular hexagons. 

Observers throughout recorded histo
ry have marveled at the hexagonal p,tl
tern of the honeybee's elaborate storage 
system. More than 2,000 years ago, Greek 
scholars commented on how bees appar
ently possess '·a certain geometrical fore
thought" in achieving just the right type 
of enclosure to hold honey efficiently. ln 
the 19th century, Charles Darwin de
scribed the honeycomb as a masterpiece 
of engineering that is ·'absolutely perfect 

60 

in econo111ising LdxJur ,rnd \11,ix." 

Biologists assume tllat bees minimize 
the amount of wax they use to build their 
combs. 13ut is a grici rnacle up of regular 
hexagons indeed the best possible choice? 
What if the walls were l'.Urvecl rather than 
flat, for ex,Hnpk"' 

Matlwmatici,til Tlwilia.s C. Hales of the 
University of !\1icl,i1fi:1 at Ann Arbor has 
rHJW fom1ulated :1 prnof uf lhe so-called 
iloneyc<)itlb l'.0J1jc:clt1r8, which holds 
tliat a liexilgun:d gdcl repre,;ents the best 
way to divide a .surial'.l~ into regions of 
equal area with tlie le,;st total perimeter. 
Hales amwrnKed the feat last month and 
posted his proof on the Internet at 
http:/ /www.math.lsa.u1nich.edu/ ~ hales/. 

Although widely believed and often 
asserted as fact, this conjecture has 
long eluded proof, says Frank Morgan of 
Williams College in Williamstown, Mass. 
Hales' pruof ''iGdks right to me," he com
rnents. \dthuugil i have" 11ot checked 
every ck~l ~1iL ,, 

Last yectr, l-i,ues pruvecl .lollannes Kep
ler's conjecture tllat the ,,rrangement 
of the familiar piles of neatly stacked 
oranges at a supermarket represents the 
best way to pad, identical spheres tight
ly (SN: 8/15/98, p. 103). 

lf Hales' proofs of the honeycomb and 
Kepler conjectures .stand the test of time, 
'•it's a remark:\!jle double achievement," 
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says physicist Denis Weaire of Trinity 
College Dublin in Ireland. 

n an essay on the "sagacity of bees," 
Pappus of Alexandria noted in the 
fourth century AD. how bees, pos-

sessing a divine sense of symmetry, had 
as their mission the fashioning of honey
combs without any cracks through which 
that wonderful nectar known as honey 
could be lost. In his mathematical analy
sis, he focused on the hexagonal arrange
ment of cells. 

Although honeycomb cells are three
dimensional structures, each cell is uni
form in the direction perpendicular to its 
base. Hence, its hexagonal cross section 
matters more than other factors in calcu
lating how much wax it takes to con
struct a comb. 

The mathematicians' honeycomb con
jecture therefore concerns a two-dimen
sional pattern-as if bees were creating a 
grid for laying out tiles to cover an infi
nitely wide bathroom floor. 

Mathematicians of ancient Greece 
asked what choices bees might have if 
they wanted to divide a flat surface into 
identical, equal-sided cells. Only three 
regular polygons pack together snugly 
without leaving gaps: equilateral tri
angles, squares, and regular hexagons. 
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Other polygons, such as pentagons and pie and elegant," says John M. Sullivan of 
octagons, will not fit together without the University of Illinois at Urbana-Cham
leaving spaces between the cells. paign. Hales' main result "shows that no 

The Greeks asserted that if the same single cell can do better than a hexagon if 
quantity of wax were used for the con- - appropriately penalized for having more 
struction of a single three-dimensional ~ 
version of the three candidate figures, ~ 
the hexagonal cell would hold more hon- ~ 
ey than a triangular or square cell. Equiv- ~ 
alently, the perimeter of a hexagonal cell ff: 
enclosing a given area is less than that of ~ 
a square or triangular cell enclosing the } 
same area. 

Other possibilities for arrays of cells, 
however, are conceivable. There's no a 
priori reason why the cells must all have 
equal sides or identical shapes and sizes. 
What about a crazy quilt of random poly
gons or cells with curved rather than 
straight sides? 

Sorting through these alternative pat
terns proved a formidable task for math
ematicians. 

It was relatively straightforward to estab
lish that a regular hexagon, with equal 
sides and 120° angles, has a smaller 
perimeter than any other six-sided figure of 
the same area. Moreover, polygons with 
more sides than the hexagon, such as regu
lar octagons, do better, and polygons with 
fewer sides, such as squares, do worse. 

In 1943, Hungarian mathematician 
L. Fejes Toth proved the honeycomb 
conjecture for the special case of filling 
the plane with any mixture of straight
sided polygons. In effect, Morgan says, 
Toth established that the average num
ber of sides per cell in a plane-filling pat
tern is at most six. Moreover, the advan
tage of having some polygons with more 
than six sides is less than the disadvan
tage of having some polygons with fewer 
sides. Under these conditions, the least
perimeter way to enclose and separate 
infinitely many regions of equal area is 
the regular hexagonal grid of the honey
comb. 

What if cells were allowed to have 
curved sides? Toth considered the ques
tion and predicted that the best answer 
is still a grid of regular hexagons. "Never
theless, this conjecture has resisted all 
attempts at proving it," he commented. 

In recent years, Morgan has refocused 
attention on the honeycomb conjecture 
and related questions, such as the most 
economical way of packaging a pair of 
identical volumes as double bubbles (SN: 
8/12/95, p. 101). In the May TRANSACTIONS 
OF THE AMERICAN MATHEMATICAL SOCIETY, he 
outlined progress in proving the hexago
nal honeycomb conjecture and its vari
ants, and he suggested a possible route 
to a proof. 

With curved sides, the complication is 
that a side that bulges out for one cell 
must bulge in for its immediate neigh
bor. Bulging out helps minimize the cell 
perimeter, while bulging in hurts. 

Hales proved that the advantage of 
bulging out is less than the disadvantage 
of bulging in. "The basic idea is quite sim-
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Two possible structures for the closed 
end of a honeycomb cell. Mathematician 
L. Fejes Toth showed that an end cap 
consisting of two hexagons and two 
squares (top left) requires a little less 
wax than the one honeybees make, with 
three diamond-shaped, or rhombic, 
panels (top right). A honeycomb consists 
of two layers of such cells placed back 
to back so that a chamber on one side is 
offset from its partner on the other side 
(bottom). 

than six sides or outward curves." 
Therefore, straight-sided polygons work 

better than curved ones, and regular hex
agons are truly best of all. 

Bees have that aspect of their honey
comb structures down pat. 

~;;;;; here's more to a honeycomb than a n vertical, hexagonal grid, however. It 
Li actually consists of two layers of 

cells placed back to back. The cells 
themselves are tilted upward at an angle 
of about 13° from tlle horizontal--just 
enough to prevent stored honey from 
dripping out. 

Instead of a flat bottom, each cell ends 
in three four-sided, diamond-shaped pan
els, meeting in a point like a pencil sharp
ened with only three knife strokes. The 
cells of the two layers are offset so the 
center of a chamber on one side is the 
corner of three adjacent cells on the oth
er side. This allows the layers to inter
lock like the bottoms of two egg cartons 
fitted together. In the honeycomb, how
ever, one layer of material serves as the 
bottoms of two cells. ln cross section, the 
interface between the two byers has a 
zigzag structure. 

The angles of each dio.mond-shaped, or 
rhombic, face of the ceil bottom are 109.5° 
and 70.5°. In the 18th century, mathemati
cians proved that these particular angles 
give the maximum volume for a three-

SCIENCE NEWS, VOL. 156 

rhombus configuration. 
In 1964, Toth discovered that a combi

nation of two hexagons and two squares 
does a little better than an end cap of 
three rhombuses in terms of the efficient 
use of wax. The difference, however, is 
very small. "By building such cells, the 
bees would save per cell less than 0.35 
percent of the area of an opening (and a 
much smaller percentage of the surface 
area of a cell)," he concluded. 

Several years ago, Weaire and his col
league Robert Phelan experimented with 
a liquid-air foam to test Toth's mathemat
ical model. They pumped equal-sized 
bubbles, about 2 mm in diameter, of a de
tergent solution between two glass plates 
to generate a double layer. 

The two layers of trapped bubbles 
formed hexagonal patterns at the glass 
plates. The interface between the two 
layers adopted Toth's structure. 

When Weaire and Phelan thickened the 
bubble walls by adding more liquid, how
ever, they unexpectedly found an abrupt 
transition. When the walls reached a par
ticular thickness, the interface suddenly 
switched to the three-rhombus configura
tion of a honeycomb. 

The switch also occurs in the reverse 
direction as liquid is removed. 

So, honeybees may very well have found 
the optimal design solution for the thicker 
wax walls of their honeycomb cells. 

For mathematicians, however, "many 
questions remain open," Morgan says. 

In two dimensions, for example, mathe
maticians can consider what happens 
when they allow arrangements that in
clude regions of several, intermingled 
components or empty spaces between 
cells. In three dimensions, the question of 
what space-filling arrangement of cells of 
equal size has the minimum surface area 
is still not settled (SN: 3/5/94, p. 149). 

"The strategies I developed for the Kep
ler conjecture were very useful with the 
honeycomb conjecture," Hales says. "A 
topic for future research might be to de
termine to what extent [those methods] 
can be adapted to other optimization 
problems." 

These are matters that concern not on
ly mathematicians but also researchers 
interested in the characteristics and be
havior of fluids, bubbles, foams, crystals, 
and a variety of biological structures, 
from cell assemblages to plant tissue. 

"Cell and tissue, shell and bone, leaf 
and flower, are so many portions of mat
ter, and it is obedience to the laws of 
physics that their particles have been 
moved, moulded and conformed," D'Arcy 
W. Thompson wrote in his celebrated 
book On Growth and Form, first pub
lished in 1917. "Their problems of form 
are in the first instance mathematical 
problems, their problems of growth are 
essentially physical problems." 

The honeybee's honeycomb fits neatly 
into the atlas of mathematically optimal 
forms found in nature. D 
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athematics and art have 
many points of contact, 
but none is more beauti

ful than the concept of symmetry. The 
mathematician's approach to symmetry 
is a little too rigid for most forms of vi
sual art, but it can be readily applied co 
any art form that features repetitive 
patterns. Wallpaper, fabrics and tiles 
are familiar examples, and all of them 
can rise to great artistic heights. Tiles 
and wallpaper designed by 19th-centu
ry British artist William Morris are dis
played in London's Victoria and Albert 
Museum. The Edo-Tokyo Museum pos
sesses some absolutely outstanding ex
amples of patterned kimonos, and the 
Alhambra palace in Granada, Spain, is 
renowned worldwide for its intricate 
tiled patterns. 

Although the basic mathematics of 
symmetry and tilings was worked out 
long ago, new discoveries continue ro 
be made, often by artists. Rosemary 
Grazebrook, a contemporary British 
artist, has invented a remarkably simple 
tiling system that is eminently practical 
and different enough from the usual 
rectangular tiles to be interesting. Ir is 
also ingenious and, in the right hands, 
beautiful. 

The mathematical definition of sym
metry is simple but subtle. A symmetry 
of a design is a transformation that 
leaves the design unchanged. For exam
ple, the transformation "rotate by 90 
degrees" leaves a square unchanged; 
the transformation "reflect from left to 

right" leaves the human form (super
ficially) unchanged. A design may have 
many different symmetries: together 
they constitute its symmetry group. 

There are also many kinds of tilings. 
The type that has traditionally attracted 
the most interest from mathematicians 
is based on a two-dimensional lattice
in effect, a planar crystal. Ironically, the 
math here was first worked out in the 
hugely difficult case of three dimensions 
and only much later carried through in 
two dimensions. In 1891 Russian crys
tallographer E. S. Fedorov proved rhat 
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CREATIONS 
by Ian Stewart 

hmices in rhe plane fall into 17 distinct 
syrnmerry rypes [see illustration on 
page 98j. The s:,rne goes for wallpaper 
designs and textile patterns. It may 
seem strange to say this when any home 
improvement score can show you 
dozens of chick books of wallpaper 
samples and rack after rack of tiles. In 
most c:1ses, however, the differences lie 
in such features as color, texture and 
the nature of the underlying design ele
mems. Important as these are to the 
customer, they do not affect the symme
try of the pattern, except that they may 
be constrained by it. For instance, square 
barhroom tiles bearing an image of a 
duck will have the same symmetry as 
similar tiles with the image of a length 
oi seaweed-unless extra symmetry oc
curs in rlie images themselves. 

Some patterns do nor possess any 
gn::ar degree of symmetry, and these I 
shall ignore here. Among them are im
portant modern discoveries such as the 
famous Penrose tiles, which completely 
cover the plane bur never repeat exactly 
the same arrangement. The patterns of 
concern here are based around one 
"funcLimemal region"-a design that is 
repeacc:d indefinitely in two indepen
dent direL'lions. For example, imagine 
an arr.,y of standard square tiles, as 
seen in so many bathrooms. Our imagi
nary bathroom, however, has infinitely 
large walls, so rhe pattern never stops. 
Pick some rile. The pattern of that tile 
repeats in both the horizontal and verti
cal direc:tions and in combinations of 
those. ln fact, if you displace the tile by 
any whole number of tile widths hori
zomalty, ro the left or the right, and 
dwn by any whole number of tile 

widths vertically, up or down, yo
find an identical tile. So the pattern re
peats in two distinct directions. Here 
those directions happen to be at right 
angles to each other, but this is not a 
general requirement. 

The existence of two such directions 
is what we mean by a lattice. Lattice 
symmetry is natural for wallpaper and 
textiles because they are usually made 
by forming a long roll of material along 
which the same pattern repeats over 
and over again-perhaps printed by a 
revolving drum or woven by a machine 
that repeats a fixed loop. When the pa
per is stuck to a wall or if the material 
is sewn together to cover a wider re
gion, it is usual to match the pattern 
along the join. But this matching may 
involve what interior decorators call a 
"drop": you slide the paper sideways 
and then up or down by some amount. 
If there is a drop, then the lattice re
peats along two directions that are not 
at right angles. 

The lattice condition is less natural • 
tiles, which are made individually, but 
is an easy scheme for an artist to follow 
when placing them on a wall or a floor. 
The square bathroom-tile lattice, for ex
ample, has rotational symmetries 
through 90 degrees. It also has reflec
tional symmetries about vertical, hori
zontal and diagonal lines that pass 
through the center or vertex of each tile 
or through the midpoint of each tile 
edge. A "honeycomb" tiling by regular 
hexagons is also a lattice, but it has dif
ferent symmetries, notably rotations 
through 60 degrees. For a more detailed 
discussion of lattice patterns, see Sym
metry in Chaos, by Michael Field and 
Martin Golubitsky (Oxford University 
Press, 1992). 

Grazebrook discovered that a partic-

ov 
PENTAGONAL TILES, • colored in t/;e pattems shown above, can form a lattice tiling in conjunction with 

reg11b- ht'.1:agons (opposite page, top) or by themselves (opposite page, bottom). 
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ular pentagonal rile can be the building 
block of a multitude of lattice patterns. 
A key feature of the rile is that it has 
two angles of 90 degrees and three of 
120 degrees, allowing the riles to be 
arranged in both square and hexagonal 
lattices [see illustration on preceding 
page]. A square tile, in contrast, has 
only 90-degree angles, so it can form 
just a few distinct lattices. Four of 
Grazebrook's pentagonal tiles can be 
fitted together to make a wide, short 
hexagon, which tiles the plane like 
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LATTICE PATTERNS 
fall into 17 symmetry 
types, first identified 

in 1891 by crystallog-
rapher E. S. Fedorov. 

bricks in a wall. When the pentagonal 
tiles are augmented with regular hexa
gons, they can form all but one of the 
17 symmetry types of lattice patterns. (I 
leave readers the pleasure of discover
ing which is the missing symmetry type 
and how to obtain the other 16.) 

Grazebrook first got the idea for 
these tiles from this very column-or, 
more accurately, from its predecessor, 
Marrin Gardner's inimitable Mathemat
ical Games column. She was studying 
for a Ph.D. at London's Royal College 

of Art, focusing on the Islamic art at the 
Alhambra. She started a dissertation 
entitled "From Islam to Escher and On
wards ... ". (Readers are probably famil
iar with the remarkable drawings of 
M. C. Escher, many of which use ani
mal shapes as tiles, arranged in mathe
matical patterns.) Grazebrook sensed a 
connection between Islamic art and Es
cher's characteristic tiling patterns, but 
only after reading Gardner's column did 
she realize that the link is the theory of 
the 17 lattice symmetry types. From 
that point on, she began to explore 
ways to make Islamic patterns using 
various lattice-based grids. 

Grazebrook introduced two distinct 
schemes for coloring her pentagonal 
tiles.- One scheme divides the tile into 
three triangles: this is called the "Pent
land" set. The other coloring scheme 
divides the pentagon into four regions: 
two squares, one kite-shaped quadrilat
eral and a smaller pentagon. This is the 
"Penthouse" set. Of course, it is possi
ble to divide and color the tiles in many 
other ways, but these sets alone can 
form an amazing variety of designs. 
The designs shown on the preceding 
page are copyrighted, and the coloring 
schemes are registered. To inquire 
about the rights for their use, tile manu
facturers can contact Grazebrook at P. 0. 
Box 328 IsLEWORTH, TW7 6FB, U.K. m 

The column on coin tosses and 
dice [°Repealing the Law of Av

erages," April 1998] attracted the at
tention of Tom Guldbrandsen of 
Lyngby,Denmark.Supposeyou keep 
rolling a die and observe the num
ber of rolls that result in 1, 2, 3, 4, 5 or 
6. What is the probability that at 
some stage all six totals are the 
same?Guldbrandsen noted that this 
event can happen only on rolJs 6, 12, 
18 and so on-multiples of 6. He 
found a formula for the probability 
that on roll 6n the totals are all equal. 
Taking account of the possibility 
that they may be equal more than 
once, he concluded that the proba
bility is 0.021903735824 (to 12 deci
mal places). The analogous result for 
a five-sided die is 0.06469, for a four
sided die is 0.2035 and for a three
sided die is 1. -IS. 
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Fig. 4.6. Two examples of periodic tilings of the plane, each using a single shape 
(found by Majorie Rice in 1976). 
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Fig. 4. 7. Two examples of periodic tilings of the plane, each using two shapes. 

I 
- -- ---7 

I 
I 

-----1 
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I 
I 

------1 
I 
I 

- -- - - -1 
I 
I 
I 

- --i ·:·:: . .-~:,:- ·-::- ~: -- - - - - : 
I ___ J 

Fig. 4.8. A periodic tiling, illustrated in relation to its period parallelogram. 

shared by many other single tile shapes and sets of tile shapes. Are there 
single tiles or sets of tiles which will tile the plane only non-periodically? The 
answer to this question is 'yes'. In Fig. 4.10, I have depicted a set of six tiles 
constructed by the American mathematician Raphael Robinson (1971) which 
will tile the entire plane, but only in a non-periodic way. 

Fig. 4.9. 

Fig. 4.JC 



• 

• 

• 



• 

PENROSE TILINGS 

NON PERIODIC TILINGS 
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224 P. J. Steinhardt 

FIG. 4. A fragment of Penrose tiling in which the overlapping C-clusters are 
indicated with different shading in the central portion. The figure illustrates 
the very high C-cluster density (shown in our proof to be the maximal possible 
density). 
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Fig. 4.12. Two pairs, each of which will tile only non-periodically ('Penrose tiles'); 
and regions of the plane tiled with each pair. 

various operations of slicing and re-gluing, I was able to reduce it to two. Two 
alternative schemes are depticed in Fig. 4.12. The necessarily non-periodic 
patterns exhibited by the completed tilings have many remarkable properties, 
including a seemingly crystallographically impossible quasi-periodic structure 
with fivefold symmetry. I shall return to these matters later. 
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n :=3 ,4 .. 20 

n= 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

F{n) = 

I 1.2990381057 

2 

2.3776412907 

2.5980762114 

2.7364101886 

2.8284271247 

2.8925442436 

2.9389262615 

2.973524496 

3 
~ 

, 3.0207006183 

3.0371861738 

3.0505248231 

3.0614674589 

3.0705541626 

3.0781812899 

3.0846449574 

! 3 .0901699437 

for 0\. ~1V&'lrf 

A-rec; -::. 2. R :i, 

For-

F(N) = A(n)/R(n)"2 

F{n+ 100) = 
I 3.139644 59 

3.139681866 

F(n+ 1000) = 

I 3.141572106 

3.141572147 

3.139718082 
3.141572188 

3.139753278 
3.141572229 

3.139787493 
3.141572269 

3.139820761 
3.14157231 

3.139853118 
3.14157235 

3.139884597 
3.14157239 

3.13991523 
3.14157243 

3.139945045 

3.139974073 

3.14000234 

3.14157247 

3.14157251 

3.14157255-

3.140029874 
3.141572589 

3.140056698 
3.141572629 

3.140082838 
3.141572668 

3.140108316 
3.141572707 

3.140133154 
3 .141572746 

3.140157375 1.3 .141572785 
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AREAS OF REGULAR POLYGONS 

n :=3,4 .. 20 

n= 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

@= b@) 

/I 
I 

A(n) = 

0.433012702 

1 

1.720477401 

2.598076211 

3.633912444 

4.828427125 

6.181824194 

7 .694208843 

9.365639907 

11.196152423 

13.185768328 

15.334501936 

17.642362911 

20.109357969 

22. 735491898 

25.520768188 

28.465189428 

31.568757573 

@ ~@ f- G{j) + 6{j) 
-=-- i13 f- 6 1-- 3!; s: ".i' 

1'wo }l)r:7#0/J.5 OF (i:-fll}P✓TI/ 

@ -c (Q f- c&) -1-- 6{i) c/t1,,/Ju f;,_,r, 

Iv/ t,/ M'l h-,u/ t?j ~ I ,fr; fa v/- f Jv )-t<--7 //. 

'1 ) J,,ft S-;I I }'b>t,,.At,,,.,., C..n,,.fW 

I cfo,-lt/t "11..v.,,,,,,J..,,..,f,i/4 

tr e{(li,,);/e /..i,,,,7/J... ,f 'j ./r 
Cf¼tjUy,/7 f' 

St3-e 1 

fl (!j = r,() 
Jtlz..) = 0 

J i[j/2 

J..f-W 

S I OG :- I 

A(n+ 16) = 

28.465189428 

31.568757573 

34.831474124 

38.253340245 

41.834356853 

45.574524676 

49.473844302 

53.532316204 

57.749940772 

62.126718325 

66.662649129 

71.357733407 

76.211971345 

81.225363101 

86.39790881 

91. 729608587 

97.22046253 

102.870470725 

n+ 16 = 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

ot.~b,,,/e-r,na/ ew.,k i "'J✓f;,7tm == 3t(j 
'11 

1 ·(}\ hvvi,, J 0i.f1 f 
'"J../(jo~c< 
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G(n) = A(n)/P(n)A2 where P(n) = 1/4 tan 1\2 

n :=3,4 .. 20 

n= 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

For 0\ S 1//orr-e 

J+::: '1 ?2-

/r-~~/r 

® '6 ........ 
'i 

{!]) I 

© 6 f3' 
2.. 

G(n) = 

5.196152423 

4 

3.63271264 

3.464101615 

3.371022332 

3.313708499 

3.275732108 

3.249196962 

3.229891422 

3.215390309 

3.204212219 

3.195408641 

3.188348425 

3.182597878 

3.177850751 

3.173885653 

3.170539238 

3.167688806 

51 or::, 
R/rfJ!U.J 

Ji 
't 

6 
2. 

G(n+ 100) = 

3.142567229 

3.142548571 

3.142530443 

3.142512826 

3.142495701 

3.14247905 

3.142462855 

3.1424471 

3.142431769 

3.142416847 

3.142402319 

3.142388173 

3.14237 4394 

3.142360969 

3.142347888 

3.142335138 

3.142322709 

3.142310588 

A- -::-R 

I+- =-1 

R- =-t 

';Jf DE =I 

p -::_ °'-f, 0 fA,e_-'WI 

G(n+ 1000) = 

3.141602927 

3.141602907 

3.141602886 

3.141602866 

3.141602846 

3.141602826 

3.141602805 

3.141602785 

3.141602765 

3.141602745 

3.141602725 

3.141602706 

3.141602686 

3.141602666 

3.141602646 

3.141602627 

3.141602607 

3.141602588 

,! 
1T 

T,{_~ /4N fit h. t,e{ s1-:,.,1/2 )8"0Jt111 kl✓''YIJ4 
/Jee i-Svf /or I-, /ii.,,_7 tit,,,/ 
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• POLRAD.MCD 

n :=3,4 .. 20 

n == R(n) = 
3 0.577350269 

4 0.707106781 

5 0.850650808 

6 1 

7 1.152382435 

8 1.306562965 

9 1.4619022 

10 1.618033989 

11 1.774732766 

12 1.931851653 • 13 2.089290734 

14 2.246979604 

15 2.404867172 

16 2.562915448 

17 2.721095576 

18 2.879385242 

19 3.03776691 

20 3.196226611 

ti'"' 'M 
~ 

s 

A r11 > -::. sf ,,, : ,n 
2..- 1-j 

• 

RADII OF REGULAR POLYGONS 

R(n+ 16) == 

3.03776691 

3.196226611 

3.35475307 

3.513337092 

3.671971098 

3.830648788 

3.989364878 

4.148114905 

4.306895074 

4.465702135 

4.62453329 

4.783386117 

4.942258507 

5.101148619 

5.260054833 

5.418975724 

5.577910028 

5.736856623 

~s,tfl(!f!)::: 

n+ 16= 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 
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G-c table GCTABLE.MCD 07/08/01 

G-c table #2 

a:= 10.476821 

b :=-3.587651 

K :=n·a-m·b 
m,n 

7 

0 73.337747 

1 76.925398 

2 80.513049 

3 84.1007 

4 87.688351 

5 91.276002 

6 94.863653 

7 98.451304 

8 102.038955 

n:=0,l..15 

m:=0,1..8 

8 9 

83.814568 94.291389 

87.402219 97.87904 

90.98987 101.466691 

94.577521 105.054342 

98.165172 108.641993 

101.752823 112.229644 

105.340474 115.817295 

108.928125 119.404946 

112.515776 122.992597 

• 
n horizontal , m vertical 

C VS G/2 

10 11 12 

104.76821 115.245031 125.721852 

108.355861 118.832682 129.309503 

111.943512 122.420333 132.897154 

115.531163 126.007984 136.484805 

119.118814 129.595635 140.072456 

122.706465 133.183286 143.660107 

126.294116 136.770937 147.247758 • 129.881767 140.358588 150.835409 

133.469418 143.946239 154.42306 

• 


